| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpcnOLD.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | cxpcnOLD.j | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 |  | cxpcnOLD.k | ⊢ 𝐾  =  ( 𝐽  ↾t  𝐷 ) | 
						
							| 4 | 1 | ellogdm | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ+ ) ) ) | 
						
							| 5 | 4 | simplbi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ℂ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 7 | 1 | logdmn0 | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ≠  0 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  ℂ )  →  𝑥  ≠  0 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  ℂ )  →  𝑦  ∈  ℂ ) | 
						
							| 10 | 6 8 9 | cxpefd | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  ℂ )  →  ( 𝑥 ↑𝑐 𝑦 )  =  ( exp ‘ ( 𝑦  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 10 | mpoeq3ia | ⊢ ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( 𝑥 ↑𝑐 𝑦 ) )  =  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( exp ‘ ( 𝑦  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 12 | 2 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 13 | 12 | a1i | ⊢ ( ⊤  →  𝐽  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 14 | 5 | ssriv | ⊢ 𝐷  ⊆  ℂ | 
						
							| 15 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ℂ )  ∧  𝐷  ⊆  ℂ )  →  ( 𝐽  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 16 | 13 14 15 | sylancl | ⊢ ( ⊤  →  ( 𝐽  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 17 | 3 16 | eqeltrid | ⊢ ( ⊤  →  𝐾  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 18 | 17 13 | cnmpt2nd | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  𝑦 )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 19 |  | fvres | ⊢ ( 𝑥  ∈  𝐷  →  ( ( log  ↾  𝐷 ) ‘ 𝑥 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  ℂ )  →  ( ( log  ↾  𝐷 ) ‘ 𝑥 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 21 | 20 | mpoeq3ia | ⊢ ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( ( log  ↾  𝐷 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( log ‘ 𝑥 ) ) | 
						
							| 22 | 17 13 | cnmpt1st | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  𝑥 )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐾 ) ) | 
						
							| 23 | 1 | logcn | ⊢ ( log  ↾  𝐷 )  ∈  ( 𝐷 –cn→ ℂ ) | 
						
							| 24 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 25 | 12 | toponrestid | ⊢ 𝐽  =  ( 𝐽  ↾t  ℂ ) | 
						
							| 26 | 2 3 25 | cncfcn | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝐷 –cn→ ℂ )  =  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 27 | 14 24 26 | mp2an | ⊢ ( 𝐷 –cn→ ℂ )  =  ( 𝐾  Cn  𝐽 ) | 
						
							| 28 | 23 27 | eleqtri | ⊢ ( log  ↾  𝐷 )  ∈  ( 𝐾  Cn  𝐽 ) | 
						
							| 29 | 28 | a1i | ⊢ ( ⊤  →  ( log  ↾  𝐷 )  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 30 | 17 13 22 29 | cnmpt21f | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( ( log  ↾  𝐷 ) ‘ 𝑥 ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 31 | 21 30 | eqeltrrid | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( log ‘ 𝑥 ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 32 | 2 | mulcn | ⊢  ·   ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →   ·   ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 34 | 17 13 18 31 33 | cnmpt22f | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( 𝑦  ·  ( log ‘ 𝑥 ) ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 35 |  | efcn | ⊢ exp  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 36 | 2 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ )  =  ( 𝐽  Cn  𝐽 ) | 
						
							| 37 | 35 36 | eleqtri | ⊢ exp  ∈  ( 𝐽  Cn  𝐽 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ⊤  →  exp  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 39 | 17 13 34 38 | cnmpt21f | ⊢ ( ⊤  →  ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( exp ‘ ( 𝑦  ·  ( log ‘ 𝑥 ) ) ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 40 | 39 | mptru | ⊢ ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( exp ‘ ( 𝑦  ·  ( log ‘ 𝑥 ) ) ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) | 
						
							| 41 | 11 40 | eqeltri | ⊢ ( 𝑥  ∈  𝐷 ,  𝑦  ∈  ℂ  ↦  ( 𝑥 ↑𝑐 𝑦 ) )  ∈  ( ( 𝐾  ×t  𝐽 )  Cn  𝐽 ) |