| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcncf1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
cxpcncf1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 3 |
|
resmpt |
⊢ ( 𝐷 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ) |
| 5 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 6 |
5
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 7 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
| 8 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 11 |
10
|
cnmptid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) |
| 12 |
6
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 13 |
10 12 1
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 15 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 16 |
14 5 15
|
cxpcn |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = 𝐴 ) → ( 𝑦 ↑𝑐 𝑧 ) = ( 𝑥 ↑𝑐 𝐴 ) ) |
| 19 |
10 11 13 10 12 17 18
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 20 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 21 |
6
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 22 |
5 15 21
|
cncfcn |
⊢ ( ( ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 23 |
7 20 22
|
mp2an |
⊢ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 24 |
23
|
eqcomi |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) ) |
| 26 |
19 25
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) ) |
| 27 |
|
rescncf |
⊢ ( 𝐷 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( 𝐷 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 29 |
2 26 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 30 |
4 29
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |