Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
2 |
1
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
4 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
5 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
6 |
2 4 5
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
8 |
|
id |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
9 |
|
snidg |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ { 𝐴 } ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ { 𝐴 } ) |
11 |
10
|
fmpttd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) : ℂ ⟶ { 𝐴 } ) |
12 |
|
cnconst |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ∧ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ ( 𝑥 ∈ ℂ ↦ 𝐴 ) : ℂ ⟶ { 𝐴 } ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) |
13 |
3 7 8 11 12
|
syl22anc |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) |
14 |
3
|
cnmptid |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
15 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
16 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
17 |
15 1 16
|
cxpcn |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
18 |
17
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
19 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝑥 ) → ( 𝑦 ↑𝑐 𝑧 ) = ( 𝐴 ↑𝑐 𝑥 ) ) |
20 |
3 13 14 7 3 18 19
|
cnmpt12 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
21 |
|
ssid |
⊢ ℂ ⊆ ℂ |
22 |
2
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
23 |
1 22 22
|
cncfcn |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
24 |
21 21 23
|
mp2an |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
25 |
24
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) = ( ℂ –cn→ ℂ ) |
26 |
25
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) = ( ℂ –cn→ ℂ ) ) |
27 |
20 26
|
eleqtrd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |