| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 | 1 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 4 |  | difss | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ | 
						
							| 5 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) | 
						
							| 6 | 2 4 5 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) | 
						
							| 8 |  | id | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 9 |  | snidg | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  𝑥  ∈  ℂ )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 11 | 10 | fmpttd | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 ) : ℂ ⟶ { 𝐴 } ) | 
						
							| 12 |  | cnconst | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ∈  ( TopOn ‘ ( ℂ  ∖  ( -∞ (,] 0 ) ) ) )  ∧  ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  ( 𝑥  ∈  ℂ  ↦  𝐴 ) : ℂ ⟶ { 𝐴 } ) )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) ) | 
						
							| 13 | 3 7 8 11 12 | syl22anc | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) ) ) | 
						
							| 14 | 3 | cnmptid | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 16 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 17 | 15 1 16 | cxpcn | ⊢ ( 𝑦  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ,  𝑧  ∈  ℂ  ↦  ( 𝑦 ↑𝑐 𝑧 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑦  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ,  𝑧  ∈  ℂ  ↦  ( 𝑦 ↑𝑐 𝑧 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ℂ  ∖  ( -∞ (,] 0 ) ) )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 19 |  | oveq12 | ⊢ ( ( 𝑦  =  𝐴  ∧  𝑧  =  𝑥 )  →  ( 𝑦 ↑𝑐 𝑧 )  =  ( 𝐴 ↑𝑐 𝑥 ) ) | 
						
							| 20 | 3 13 14 7 3 18 19 | cnmpt12 | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑥  ∈  ℂ  ↦  ( 𝐴 ↑𝑐 𝑥 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 21 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 22 | 2 | toponrestid | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 23 | 1 22 22 | cncfcn | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ℂ –cn→ ℂ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 24 | 21 21 23 | mp2an | ⊢ ( ℂ –cn→ ℂ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ℂ –cn→ ℂ ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ℂ –cn→ ℂ ) ) | 
						
							| 27 | 20 26 | eleqtrd | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑥  ∈  ℂ  ↦  ( 𝐴 ↑𝑐 𝑥 ) )  ∈  ( ℂ –cn→ ℂ ) ) |