Step |
Hyp |
Ref |
Expression |
1 |
|
cxpne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) |
2 |
1
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) |
3 |
2
|
3expia |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ≠ 0 → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) ) |
4 |
3
|
necon4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → 𝐴 = 0 ) ) |
5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
6 |
|
cxp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) |
7 |
6
|
neeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑𝑐 0 ) ≠ 0 ↔ 1 ≠ 0 ) ) |
8 |
5 7
|
mpbiri |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) ≠ 0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 0 ) ≠ 0 ) |
10 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 0 ) ) |
11 |
10
|
neeq1d |
⊢ ( 𝐵 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ↔ ( 𝐴 ↑𝑐 0 ) ≠ 0 ) ) |
12 |
9 11
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 = 0 → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) ) |
13 |
12
|
necon2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → 𝐵 ≠ 0 ) ) |
14 |
4 13
|
jcad |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ) |
15 |
|
0cxp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
16 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 ↔ ( 0 ↑𝑐 𝐵 ) = 0 ) ) |
18 |
15 17
|
syl5ibrcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
19 |
18
|
expimpd |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ≠ 0 ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
20 |
19
|
ancomsd |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) ) |
22 |
14 21
|
impbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ) |