Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) |
2 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
3 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
4 |
|
0cxp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝐵 ∈ ℕ → ( 0 ↑𝑐 𝐵 ) = 0 ) |
6 |
|
0exp |
⊢ ( 𝐵 ∈ ℕ → ( 0 ↑ 𝐵 ) = 0 ) |
7 |
5 6
|
eqtr4d |
⊢ ( 𝐵 ∈ ℕ → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
8 |
|
0cn |
⊢ 0 ∈ ℂ |
9 |
|
cxpval |
⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 0 ↑𝑐 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) ) |
10 |
8 8 9
|
mp2an |
⊢ ( 0 ↑𝑐 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) |
11 |
|
eqid |
⊢ 0 = 0 |
12 |
11
|
iftruei |
⊢ if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ‘ ( 0 · ( log ‘ 0 ) ) ) ) = if ( 0 = 0 , 1 , 0 ) |
13 |
11
|
iftruei |
⊢ if ( 0 = 0 , 1 , 0 ) = 1 |
14 |
10 12 13
|
3eqtri |
⊢ ( 0 ↑𝑐 0 ) = 1 |
15 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
16 |
14 15
|
eqtr4i |
⊢ ( 0 ↑𝑐 0 ) = ( 0 ↑ 0 ) |
17 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
18 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 0 ↑ 𝐵 ) = ( 0 ↑ 0 ) ) |
19 |
16 17 18
|
3eqtr4a |
⊢ ( 𝐵 = 0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
20 |
7 19
|
jaoi |
⊢ ( ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
21 |
1 20
|
sylbi |
⊢ ( 𝐵 ∈ ℕ0 → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
22 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
23 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
24 |
22 23
|
eqeq12d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ↔ ( 0 ↑𝑐 𝐵 ) = ( 0 ↑ 𝐵 ) ) ) |
25 |
21 24
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
28 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
29 |
|
cxpexpz |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
30 |
29
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
31 |
28 30
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
32 |
31
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
33 |
27 32
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |