Metamath Proof Explorer


Theorem cxpexpz

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpexpz ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴𝑐 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 zcn ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ )
2 cxpef ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) )
3 1 2 syl3an3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) )
4 explog ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) )
5 3 4 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴𝑐 𝐵 ) = ( 𝐴𝐵 ) )