Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpexpz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 2 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 3 | 1 2 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 4 | explog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 5 | 3 4 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |