Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐴 ≤ 𝐵 ) |
2 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
3 |
2
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐴 ∈ ℝ ) |
4 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐴 ) |
5 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐵 ∈ ℝ ) |
7 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ∈ ℝ ) |
8 |
7 3 6 4 1
|
letrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐵 ) |
9 |
|
simp13 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
10 |
9
|
anim1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
11 |
|
elrp |
⊢ ( 𝐶 ∈ ℝ+ ↔ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
12 |
10 11
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐶 ∈ ℝ+ ) |
13 |
|
cxple2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
14 |
3 4 6 8 12 13
|
syl221anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
15 |
1 14
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
16 |
|
1le1 |
⊢ 1 ≤ 1 |
17 |
16
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 ≤ 1 ) |
18 |
2
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℂ ) |
19 |
|
cxp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
21 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐴 ↑𝑐 0 ) = ( 𝐴 ↑𝑐 𝐶 ) ) |
22 |
20 21
|
sylan9req |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐴 ↑𝑐 𝐶 ) ) |
23 |
5
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℂ ) |
24 |
|
cxp0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑𝑐 0 ) = 1 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ↑𝑐 0 ) = 1 ) |
26 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐵 ↑𝑐 0 ) = ( 𝐵 ↑𝑐 𝐶 ) ) |
27 |
25 26
|
sylan9req |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐵 ↑𝑐 𝐶 ) ) |
28 |
17 22 27
|
3brtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
29 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐶 ) |
30 |
|
0re |
⊢ 0 ∈ ℝ |
31 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
32 |
30 9 31
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
33 |
29 32
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) |
34 |
15 28 33
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |