Metamath Proof Explorer
Description: Ordering property for complex exponentiation. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
recxpcld.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
recxpcld.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
cxple2ad.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
cxple2ad.5 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
|
|
cxple2ad.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
Assertion |
cxple2ad |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recxpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
recxpcld.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
3 |
|
recxpcld.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
cxple2ad.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
cxple2ad.5 |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
6 |
|
cxple2ad.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
7 |
|
cxple2a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
8 |
1 3 4 2 5 6 7
|
syl321anc |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |