Metamath Proof Explorer


Theorem cxple2ad

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 ( 𝜑𝐴 ∈ ℝ )
recxpcld.2 ( 𝜑 → 0 ≤ 𝐴 )
recxpcld.3 ( 𝜑𝐵 ∈ ℝ )
cxple2ad.4 ( 𝜑𝐶 ∈ ℝ )
cxple2ad.5 ( 𝜑 → 0 ≤ 𝐶 )
cxple2ad.6 ( 𝜑𝐴𝐵 )
Assertion cxple2ad ( 𝜑 → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )

Proof

Step Hyp Ref Expression
1 recxpcld.1 ( 𝜑𝐴 ∈ ℝ )
2 recxpcld.2 ( 𝜑 → 0 ≤ 𝐴 )
3 recxpcld.3 ( 𝜑𝐵 ∈ ℝ )
4 cxple2ad.4 ( 𝜑𝐶 ∈ ℝ )
5 cxple2ad.5 ( 𝜑 → 0 ≤ 𝐶 )
6 cxple2ad.6 ( 𝜑𝐴𝐵 )
7 cxple2a ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )
8 1 3 4 2 5 6 7 syl321anc ( 𝜑 → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )