| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 2 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 3 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
| 4 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
| 5 |
|
cxple |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 6 |
2 3 4 5
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 7 |
1 6
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| 8 |
|
1le1 |
⊢ 1 ≤ 1 |
| 9 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℂ ) |
| 11 |
|
1cxp |
⊢ ( 𝐵 ∈ ℂ → ( 1 ↑𝑐 𝐵 ) = 1 ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐵 ) = 1 ) |
| 13 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 15 |
|
1cxp |
⊢ ( 𝐶 ∈ ℂ → ( 1 ↑𝑐 𝐶 ) = 1 ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐶 ) = 1 ) |
| 17 |
12 16
|
breq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ↔ 1 ≤ 1 ) ) |
| 18 |
8 17
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ) |
| 19 |
|
oveq1 |
⊢ ( 1 = 𝐴 → ( 1 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 𝐵 ) ) |
| 20 |
|
oveq1 |
⊢ ( 1 = 𝐴 → ( 1 ↑𝑐 𝐶 ) = ( 𝐴 ↑𝑐 𝐶 ) ) |
| 21 |
19 20
|
breq12d |
⊢ ( 1 = 𝐴 → ( ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 22 |
18 21
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 = 𝐴 → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 = 𝐴 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| 24 |
|
1re |
⊢ 1 ∈ ℝ |
| 25 |
|
leloe |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
| 26 |
24 25
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) |
| 29 |
7 23 28
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |