Metamath Proof Explorer


Theorem cxplead

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 ( 𝜑𝐴 ∈ ℝ )
cxplead.2 ( 𝜑 → 1 ≤ 𝐴 )
cxplead.3 ( 𝜑𝐵 ∈ ℝ )
cxplead.4 ( 𝜑𝐶 ∈ ℝ )
cxplead.5 ( 𝜑𝐵𝐶 )
Assertion cxplead ( 𝜑 → ( 𝐴𝑐 𝐵 ) ≤ ( 𝐴𝑐 𝐶 ) )

Proof

Step Hyp Ref Expression
1 recxpcld.1 ( 𝜑𝐴 ∈ ℝ )
2 cxplead.2 ( 𝜑 → 1 ≤ 𝐴 )
3 cxplead.3 ( 𝜑𝐵 ∈ ℝ )
4 cxplead.4 ( 𝜑𝐶 ∈ ℝ )
5 cxplead.5 ( 𝜑𝐵𝐶 )
6 cxplea ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵𝐶 ) → ( 𝐴𝑐 𝐵 ) ≤ ( 𝐴𝑐 𝐶 ) )
7 1 2 3 4 5 6 syl221anc ( 𝜑 → ( 𝐴𝑐 𝐵 ) ≤ ( 𝐴𝑐 𝐶 ) )