| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 3 |
|
rpge0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ 𝑥 ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ 𝑥 ) |
| 5 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 6 |
5
|
renegcld |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → - 𝐴 ∈ ℝ ) |
| 8 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 9 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
| 10 |
8 9
|
negne0d |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 ≠ 0 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → - 𝐴 ≠ 0 ) |
| 12 |
7 11
|
rereccld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / - 𝐴 ) ∈ ℝ ) |
| 13 |
2 4 12
|
recxpcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) ∈ ℝ ) |
| 14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝑛 ∈ ℝ+ ) |
| 15 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝐴 ∈ ℝ ) |
| 16 |
14 15
|
rpcxpcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℝ+ ) |
| 17 |
16
|
rpreccld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℝ+ ) |
| 18 |
17
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) ) |
| 19 |
|
absid |
⊢ ( ( ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) = ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) = ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) |
| 21 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝑥 ∈ ℝ+ ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) |
| 23 |
|
rpreccl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 25 |
24
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 26 |
21 25
|
cxprecd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 1 / 𝑥 ) ↑𝑐 ( 1 / 𝐴 ) ) = ( 1 / ( 𝑥 ↑𝑐 ( 1 / 𝐴 ) ) ) ) |
| 27 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 28 |
27
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝑥 ∈ ℂ ) |
| 29 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝑥 ≠ 0 ) |
| 31 |
28 30 25
|
cxpnegd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑥 ↑𝑐 - ( 1 / 𝐴 ) ) = ( 1 / ( 𝑥 ↑𝑐 ( 1 / 𝐴 ) ) ) ) |
| 32 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 1 ∈ ℂ ) |
| 33 |
8
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 34 |
9
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝐴 ≠ 0 ) |
| 35 |
32 33 34
|
divneg2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → - ( 1 / 𝐴 ) = ( 1 / - 𝐴 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑥 ↑𝑐 - ( 1 / 𝐴 ) ) = ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) ) |
| 37 |
26 31 36
|
3eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 1 / 𝑥 ) ↑𝑐 ( 1 / 𝐴 ) ) = ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) ) |
| 38 |
33 34
|
recidd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑛 ↑𝑐 ( 𝐴 · ( 1 / 𝐴 ) ) ) = ( 𝑛 ↑𝑐 1 ) ) |
| 40 |
14 15 25
|
cxpmuld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑛 ↑𝑐 ( 𝐴 · ( 1 / 𝐴 ) ) ) = ( ( 𝑛 ↑𝑐 𝐴 ) ↑𝑐 ( 1 / 𝐴 ) ) ) |
| 41 |
14
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 𝑛 ∈ ℂ ) |
| 42 |
41
|
cxp1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑛 ↑𝑐 1 ) = 𝑛 ) |
| 43 |
39 40 42
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 𝑛 ↑𝑐 𝐴 ) ↑𝑐 ( 1 / 𝐴 ) ) = 𝑛 ) |
| 44 |
22 37 43
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 1 / 𝑥 ) ↑𝑐 ( 1 / 𝐴 ) ) < ( ( 𝑛 ↑𝑐 𝐴 ) ↑𝑐 ( 1 / 𝐴 ) ) ) |
| 45 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 47 |
46
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 48 |
46
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 0 ≤ ( 1 / 𝑥 ) ) |
| 49 |
16
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℝ ) |
| 50 |
16
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → 0 ≤ ( 𝑛 ↑𝑐 𝐴 ) ) |
| 51 |
47 48 49 50 24
|
cxplt2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( ( 1 / 𝑥 ) < ( 𝑛 ↑𝑐 𝐴 ) ↔ ( ( 1 / 𝑥 ) ↑𝑐 ( 1 / 𝐴 ) ) < ( ( 𝑛 ↑𝑐 𝐴 ) ↑𝑐 ( 1 / 𝐴 ) ) ) ) |
| 52 |
44 51
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / 𝑥 ) < ( 𝑛 ↑𝑐 𝐴 ) ) |
| 53 |
21 16 52
|
ltrec1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) < 𝑥 ) |
| 54 |
20 53
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) |
| 55 |
54
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
| 56 |
55
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℝ+ ( ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
| 57 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) → ( 𝑦 < 𝑛 ↔ ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 ) ) |
| 58 |
57
|
rspceaimv |
⊢ ( ( ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) ∈ ℝ ∧ ∀ 𝑛 ∈ ℝ+ ( ( 𝑥 ↑𝑐 ( 1 / - 𝐴 ) ) < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
| 59 |
13 56 58
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
| 60 |
59
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ+ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
| 61 |
|
id |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ+ ) |
| 62 |
|
rpcxpcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℝ+ ) |
| 63 |
61 5 62
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℝ+ ) |
| 64 |
63
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℝ+ ) |
| 65 |
64
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℂ ) |
| 66 |
65
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ+ → ∀ 𝑛 ∈ ℝ+ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℂ ) |
| 67 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 68 |
67
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ ) |
| 69 |
66 68
|
rlim0lt |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
| 70 |
60 69
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛 ↑𝑐 𝐴 ) ) ) ⇝𝑟 0 ) |