| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
| 2 |
1
|
oveq2d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = ( 𝐵 ↑𝑐 ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) ) |
| 3 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → 𝐵 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → 𝐵 ∈ ℂ ) |
| 5 |
|
eldif |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ { 0 , 1 } ) ) |
| 6 |
|
c0ex |
⊢ 0 ∈ V |
| 7 |
6
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 8 |
|
eleq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 ∈ { 0 , 1 } ↔ 0 ∈ { 0 , 1 } ) ) |
| 9 |
7 8
|
mpbiri |
⊢ ( 𝐵 = 0 → 𝐵 ∈ { 0 , 1 } ) |
| 10 |
9
|
necon3bi |
⊢ ( ¬ 𝐵 ∈ { 0 , 1 } → 𝐵 ≠ 0 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ { 0 , 1 } ) → 𝐵 ≠ 0 ) |
| 12 |
5 11
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → 𝐵 ≠ 0 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → 𝐵 ≠ 0 ) |
| 14 |
|
eldif |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ { 0 } ) ) |
| 15 |
6
|
snid |
⊢ 0 ∈ { 0 } |
| 16 |
|
eleq1 |
⊢ ( 𝑋 = 0 → ( 𝑋 ∈ { 0 } ↔ 0 ∈ { 0 } ) ) |
| 17 |
15 16
|
mpbiri |
⊢ ( 𝑋 = 0 → 𝑋 ∈ { 0 } ) |
| 18 |
17
|
necon3bi |
⊢ ( ¬ 𝑋 ∈ { 0 } → 𝑋 ≠ 0 ) |
| 19 |
18
|
anim2i |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ { 0 } ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
| 20 |
14 19
|
sylbi |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
| 21 |
|
logcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 24 |
10
|
anim2i |
⊢ ( ( 𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ { 0 , 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 25 |
5 24
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 26 |
|
logcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 27 |
25 26
|
syl |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 29 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 30 |
29
|
biimpi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 32 |
|
logccne0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 34 |
23 28 33
|
divcld |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 35 |
4 13 34
|
cxpefd |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ↑𝑐 ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) = ( exp ‘ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) · ( log ‘ 𝐵 ) ) ) ) |
| 36 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
| 37 |
36 21
|
sylbi |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 39 |
29 32
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 41 |
38 28 40
|
divcan1d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) · ( log ‘ 𝐵 ) ) = ( log ‘ 𝑋 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) · ( log ‘ 𝐵 ) ) ) = ( exp ‘ ( log ‘ 𝑋 ) ) ) |
| 43 |
|
eflog |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( exp ‘ ( log ‘ 𝑋 ) ) = 𝑋 ) |
| 44 |
36 43
|
sylbi |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( exp ‘ ( log ‘ 𝑋 ) ) = 𝑋 ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( log ‘ 𝑋 ) ) = 𝑋 ) |
| 46 |
42 45
|
eqtrd |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) · ( log ‘ 𝐵 ) ) ) = 𝑋 ) |
| 47 |
2 35 46
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |