Metamath Proof Explorer


Theorem cxploglim

Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion cxploglim ( 𝐴 ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) ⇝𝑟 0 )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 reefcl ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝐴 ∈ ℝ+ → ( exp ‘ 𝐴 ) ∈ ℝ )
4 efgt1 ( 𝐴 ∈ ℝ+ → 1 < ( exp ‘ 𝐴 ) )
5 cxp2limlem ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ 1 < ( exp ‘ 𝐴 ) ) → ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 )
6 3 4 5 syl2anc ( 𝐴 ∈ ℝ+ → ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 )
7 reefcl ( 𝑧 ∈ ℝ → ( exp ‘ 𝑧 ) ∈ ℝ )
8 7 adantl ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) → ( exp ‘ 𝑧 ) ∈ ℝ )
9 1re 1 ∈ ℝ
10 ifcl ( ( ( exp ‘ 𝑧 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ )
11 8 9 10 sylancl ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) → if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ )
12 rpre ( 𝑛 ∈ ℝ+𝑛 ∈ ℝ )
13 maxlt ( ( 1 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ↔ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) )
14 9 8 12 13 mp3an3an ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ↔ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) )
15 simprrr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝑧 ) < 𝑛 )
16 reeflog ( 𝑛 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝑛 ) ) = 𝑛 )
17 16 ad2antrl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ ( log ‘ 𝑛 ) ) = 𝑛 )
18 15 17 breqtrrd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) )
19 simplr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑧 ∈ ℝ )
20 12 ad2antrl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ∈ ℝ )
21 simprrl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 1 < 𝑛 )
22 20 21 rplogcld ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ+ )
23 22 rpred ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ )
24 eflt ( ( 𝑧 ∈ ℝ ∧ ( log ‘ 𝑛 ) ∈ ℝ ) → ( 𝑧 < ( log ‘ 𝑛 ) ↔ ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) ) )
25 19 23 24 syl2anc ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( 𝑧 < ( log ‘ 𝑛 ) ↔ ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) ) )
26 18 25 mpbird ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑧 < ( log ‘ 𝑛 ) )
27 breq2 ( 𝑚 = ( log ‘ 𝑛 ) → ( 𝑧 < 𝑚𝑧 < ( log ‘ 𝑛 ) ) )
28 id ( 𝑚 = ( log ‘ 𝑛 ) → 𝑚 = ( log ‘ 𝑛 ) )
29 oveq2 ( 𝑚 = ( log ‘ 𝑛 ) → ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) = ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) )
30 28 29 oveq12d ( 𝑚 = ( log ‘ 𝑛 ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) = ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) )
31 30 fveq2d ( 𝑚 = ( log ‘ 𝑛 ) → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) = ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) )
32 31 breq1d ( 𝑚 = ( log ‘ 𝑛 ) → ( ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) )
33 27 32 imbi12d ( 𝑚 = ( log ‘ 𝑛 ) → ( ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) ↔ ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) )
34 33 rspcv ( ( log ‘ 𝑛 ) ∈ ℝ+ → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) )
35 22 34 syl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) )
36 26 35 mpid ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) )
37 1 ad2antrr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝐴 ∈ ℝ )
38 37 relogefd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ ( exp ‘ 𝐴 ) ) = 𝐴 )
39 38 oveq2d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( ( log ‘ 𝑛 ) · 𝐴 ) )
40 22 rpcnd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ )
41 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
42 41 ad2antrr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝐴 ∈ ℂ )
43 40 42 mulcomd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · 𝐴 ) = ( 𝐴 · ( log ‘ 𝑛 ) ) )
44 39 43 eqtrd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( 𝐴 · ( log ‘ 𝑛 ) ) )
45 44 fveq2d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑛 ) ) ) )
46 3 ad2antrr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ∈ ℝ )
47 46 recnd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ∈ ℂ )
48 efne0 ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 )
49 42 48 syl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ≠ 0 )
50 47 49 40 cxpefd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) = ( exp ‘ ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) ) )
51 rpcn ( 𝑛 ∈ ℝ+𝑛 ∈ ℂ )
52 51 ad2antrl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ∈ ℂ )
53 rpne0 ( 𝑛 ∈ ℝ+𝑛 ≠ 0 )
54 53 ad2antrl ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ≠ 0 )
55 52 54 42 cxpefd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( 𝑛𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑛 ) ) ) )
56 45 50 55 3eqtr4d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) = ( 𝑛𝑐 𝐴 ) )
57 56 oveq2d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) = ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) )
58 57 fveq2d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) = ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) )
59 58 breq1d ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ↔ ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) )
60 36 59 sylibd ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) )
61 60 expr ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
62 14 61 sylbid ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
63 62 com23 ( ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
64 63 ralrimdva ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑛 ∈ ℝ+ ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
65 breq1 ( 𝑦 = if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) → ( 𝑦 < 𝑛 ↔ if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ) )
66 65 rspceaimv ( ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ ∧ ∀ 𝑛 ∈ ℝ+ ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) )
67 11 64 66 syl6an ( ( 𝐴 ∈ ℝ+𝑧 ∈ ℝ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
68 67 rexlimdva ( 𝐴 ∈ ℝ+ → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
69 68 ralimdv ( 𝐴 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
70 simpr ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ+ )
71 1 adantr ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
72 71 rpefcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → ( exp ‘ 𝐴 ) ∈ ℝ+ )
73 rpre ( 𝑚 ∈ ℝ+𝑚 ∈ ℝ )
74 73 adantl ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ )
75 72 74 rpcxpcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ∈ ℝ+ )
76 70 75 rpdivcld ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℝ+ )
77 76 rpcnd ( ( 𝐴 ∈ ℝ+𝑚 ∈ ℝ+ ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℂ )
78 77 ralrimiva ( 𝐴 ∈ ℝ+ → ∀ 𝑚 ∈ ℝ+ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℂ )
79 rpssre + ⊆ ℝ
80 79 a1i ( 𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ )
81 78 80 rlim0lt ( 𝐴 ∈ ℝ+ → ( ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) ) )
82 relogcl ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ )
83 82 adantl ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( log ‘ 𝑛 ) ∈ ℝ )
84 simpr ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ+ )
85 1 adantr ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
86 84 85 rpcxpcld ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( 𝑛𝑐 𝐴 ) ∈ ℝ+ )
87 83 86 rerpdivcld ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ∈ ℝ )
88 87 recnd ( ( 𝐴 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ∈ ℂ )
89 88 ralrimiva ( 𝐴 ∈ ℝ+ → ∀ 𝑛 ∈ ℝ+ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ∈ ℂ )
90 89 80 rlim0lt ( 𝐴 ∈ ℝ+ → ( ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) < 𝑥 ) ) )
91 69 81 90 3imtr4d ( 𝐴 ∈ ℝ+ → ( ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 → ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) ⇝𝑟 0 ) )
92 6 91 mpd ( 𝐴 ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛𝑐 𝐴 ) ) ) ⇝𝑟 0 )