Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
efgt1 |
⊢ ( 𝐴 ∈ ℝ+ → 1 < ( exp ‘ 𝐴 ) ) |
5 |
|
cxp2limlem |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ 1 < ( exp ‘ 𝐴 ) ) → ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 ) |
7 |
|
reefcl |
⊢ ( 𝑧 ∈ ℝ → ( exp ‘ 𝑧 ) ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) → ( exp ‘ 𝑧 ) ∈ ℝ ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
|
ifcl |
⊢ ( ( ( exp ‘ 𝑧 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) → if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ ) |
12 |
|
rpre |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) |
13 |
|
maxlt |
⊢ ( ( 1 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ↔ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) |
14 |
9 8 12 13
|
mp3an3an |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ↔ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) |
15 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝑧 ) < 𝑛 ) |
16 |
|
reeflog |
⊢ ( 𝑛 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝑛 ) ) = 𝑛 ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ ( log ‘ 𝑛 ) ) = 𝑛 ) |
18 |
15 17
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) ) |
19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑧 ∈ ℝ ) |
20 |
12
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ∈ ℝ ) |
21 |
|
simprrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 1 < 𝑛 ) |
22 |
20 21
|
rplogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ+ ) |
23 |
22
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
24 |
|
eflt |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( log ‘ 𝑛 ) ∈ ℝ ) → ( 𝑧 < ( log ‘ 𝑛 ) ↔ ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) ) ) |
25 |
19 23 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( 𝑧 < ( log ‘ 𝑛 ) ↔ ( exp ‘ 𝑧 ) < ( exp ‘ ( log ‘ 𝑛 ) ) ) ) |
26 |
18 25
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑧 < ( log ‘ 𝑛 ) ) |
27 |
|
breq2 |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( 𝑧 < 𝑚 ↔ 𝑧 < ( log ‘ 𝑛 ) ) ) |
28 |
|
id |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → 𝑚 = ( log ‘ 𝑛 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) = ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) |
30 |
28 29
|
oveq12d |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) = ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) = ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) ) |
32 |
31
|
breq1d |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) |
33 |
27 32
|
imbi12d |
⊢ ( 𝑚 = ( log ‘ 𝑛 ) → ( ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) ↔ ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) ) |
34 |
33
|
rspcv |
⊢ ( ( log ‘ 𝑛 ) ∈ ℝ+ → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) ) |
35 |
22 34
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( 𝑧 < ( log ‘ 𝑛 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) ) |
36 |
26 35
|
mpid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ) ) |
37 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝐴 ∈ ℝ ) |
38 |
37
|
relogefd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ ( exp ‘ 𝐴 ) ) = 𝐴 ) |
39 |
38
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( ( log ‘ 𝑛 ) · 𝐴 ) ) |
40 |
22
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
41 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝐴 ∈ ℂ ) |
43 |
40 42
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · 𝐴 ) = ( 𝐴 · ( log ‘ 𝑛 ) ) ) |
44 |
39 43
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( 𝐴 · ( log ‘ 𝑛 ) ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑛 ) ) ) ) |
46 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ∈ ℂ ) |
48 |
|
efne0 |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 ) |
49 |
42 48
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( exp ‘ 𝐴 ) ≠ 0 ) |
50 |
47 49 40
|
cxpefd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) = ( exp ‘ ( ( log ‘ 𝑛 ) · ( log ‘ ( exp ‘ 𝐴 ) ) ) ) ) |
51 |
|
rpcn |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ ) |
52 |
51
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ∈ ℂ ) |
53 |
|
rpne0 |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) |
54 |
53
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → 𝑛 ≠ 0 ) |
55 |
52 54 42
|
cxpefd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( 𝑛 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑛 ) ) ) ) |
56 |
45 50 55
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) = ( 𝑛 ↑𝑐 𝐴 ) ) |
57 |
56
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) = ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) = ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) ) |
59 |
58
|
breq1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ( abs ‘ ( ( log ‘ 𝑛 ) / ( ( exp ‘ 𝐴 ) ↑𝑐 ( log ‘ 𝑛 ) ) ) ) < 𝑥 ↔ ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
60 |
36 59
|
sylibd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
61 |
60
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( ( 1 < 𝑛 ∧ ( exp ‘ 𝑧 ) < 𝑛 ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
62 |
14 61
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
63 |
62
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
64 |
63
|
ralrimdva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑛 ∈ ℝ+ ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
65 |
|
breq1 |
⊢ ( 𝑦 = if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) → ( 𝑦 < 𝑛 ↔ if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 ) ) |
66 |
65
|
rspceaimv |
⊢ ( ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) ∈ ℝ ∧ ∀ 𝑛 ∈ ℝ+ ( if ( 1 ≤ ( exp ‘ 𝑧 ) , ( exp ‘ 𝑧 ) , 1 ) < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) |
67 |
11 64 66
|
syl6an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
68 |
67
|
rexlimdva |
⊢ ( 𝐴 ∈ ℝ+ → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
69 |
68
|
ralimdv |
⊢ ( 𝐴 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
70 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ+ ) |
71 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
72 |
71
|
rpefcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( exp ‘ 𝐴 ) ∈ ℝ+ ) |
73 |
|
rpre |
⊢ ( 𝑚 ∈ ℝ+ → 𝑚 ∈ ℝ ) |
74 |
73
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ ) |
75 |
72 74
|
rpcxpcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ∈ ℝ+ ) |
76 |
70 75
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℝ+ ) |
77 |
76
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℂ ) |
78 |
77
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ+ → ∀ 𝑚 ∈ ℝ+ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ∈ ℂ ) |
79 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
80 |
79
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ ) |
81 |
78 80
|
rlim0lt |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℝ+ ( 𝑧 < 𝑚 → ( abs ‘ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) < 𝑥 ) ) ) |
82 |
|
relogcl |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ ) |
83 |
82
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
84 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℝ+ ) |
85 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
86 |
84 85
|
rpcxpcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℝ+ ) |
87 |
83 86
|
rerpdivcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℝ ) |
88 |
87
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℂ ) |
89 |
88
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ+ → ∀ 𝑛 ∈ ℝ+ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ∈ ℂ ) |
90 |
89 80
|
rlim0lt |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) < 𝑥 ) ) ) |
91 |
69 81 90
|
3imtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑚 ∈ ℝ+ ↦ ( 𝑚 / ( ( exp ‘ 𝐴 ) ↑𝑐 𝑚 ) ) ) ⇝𝑟 0 → ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) ⇝𝑟 0 ) ) |
92 |
6 91
|
mpd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( ( log ‘ 𝑛 ) / ( 𝑛 ↑𝑐 𝐴 ) ) ) ⇝𝑟 0 ) |