Metamath Proof Explorer


Theorem cxpmul2

Description: Product of exponents law for complex exponentiation. Variation on cxpmul with more general conditions on A and B when C is an integer. (Contributed by Mario Carneiro, 9-Aug-2014)

Ref Expression
Assertion cxpmul2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑥 = 0 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 0 ) )
2 1 oveq2d ( 𝑥 = 0 → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴𝑐 ( 𝐵 · 0 ) ) )
3 oveq2 ( 𝑥 = 0 → ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴𝑐 𝐵 ) ↑ 0 ) )
4 2 3 eqeq12d ( 𝑥 = 0 → ( ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 0 ) ) )
5 4 imbi2d ( 𝑥 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 0 ) ) ) )
6 oveq2 ( 𝑥 = 𝑘 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑘 ) )
7 6 oveq2d ( 𝑥 = 𝑘 → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) )
8 oveq2 ( 𝑥 = 𝑘 → ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) )
9 7 8 eqeq12d ( 𝑥 = 𝑘 → ( ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) ) )
10 9 imbi2d ( 𝑥 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) ) ) )
11 oveq2 ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑘 + 1 ) ) )
12 11 oveq2d ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) )
13 oveq2 ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) )
14 12 13 eqeq12d ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) )
15 14 imbi2d ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) )
16 oveq2 ( 𝑥 = 𝐶 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝐶 ) )
17 16 oveq2d ( 𝑥 = 𝐶 → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) )
18 oveq2 ( 𝑥 = 𝐶 → ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) )
19 17 18 eqeq12d ( 𝑥 = 𝐶 → ( ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) ) )
20 19 imbi2d ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) ) ) )
21 cxp0 ( 𝐴 ∈ ℂ → ( 𝐴𝑐 0 ) = 1 )
22 21 adantr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 0 ) = 1 )
23 mul01 ( 𝐵 ∈ ℂ → ( 𝐵 · 0 ) = 0 )
24 23 adantl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · 0 ) = 0 )
25 24 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 0 ) ) = ( 𝐴𝑐 0 ) )
26 cxpcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 𝐵 ) ∈ ℂ )
27 26 exp0d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝑐 𝐵 ) ↑ 0 ) = 1 )
28 22 25 27 3eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 0 ) )
29 oveq1 ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) = ( ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴𝑐 𝐵 ) ) )
30 0cn 0 ∈ ℂ
31 cxp0 ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 )
32 30 31 ax-mp ( 0 ↑𝑐 0 ) = 1
33 1t1e1 ( 1 · 1 ) = 1
34 32 33 eqtr4i ( 0 ↑𝑐 0 ) = ( 1 · 1 )
35 simplr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐴 = 0 )
36 simpr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 )
37 36 oveq1d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( 0 · ( 𝑘 + 1 ) ) )
38 nn0p1nn ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ )
39 38 adantl ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ )
40 39 nncnd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ )
41 40 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝑘 + 1 ) ∈ ℂ )
42 41 mul02d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · ( 𝑘 + 1 ) ) = 0 )
43 37 42 eqtrd ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = 0 )
44 35 43 oveq12d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 0 ) )
45 36 oveq1d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = ( 0 · 𝑘 ) )
46 nn0cn ( 𝑘 ∈ ℕ0𝑘 ∈ ℂ )
47 46 adantl ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ )
48 47 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝑘 ∈ ℂ )
49 48 mul02d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · 𝑘 ) = 0 )
50 45 49 eqtrd ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = 0 )
51 35 50 oveq12d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( 0 ↑𝑐 0 ) )
52 51 32 eqtrdi ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = 1 )
53 35 36 oveq12d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) )
54 53 32 eqtrdi ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 𝐵 ) = 1 )
55 52 54 oveq12d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) = ( 1 · 1 ) )
56 34 44 55 3eqtr4a ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
57 simpll ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ )
58 57 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ )
59 simplr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ )
60 59 47 mulcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ )
61 60 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ )
62 cxpcl ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ )
63 58 61 62 syl2anc ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ )
64 63 mul01d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) = 0 )
65 simplr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 = 0 )
66 65 oveq1d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) )
67 59 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ )
68 simpr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 )
69 0cxp ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 )
70 67 68 69 syl2anc ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 )
71 66 70 eqtrd ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 𝐵 ) = 0 )
72 71 oveq2d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) )
73 65 oveq1d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) )
74 40 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℂ )
75 67 74 mulcld ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ )
76 39 nnne0d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ≠ 0 )
77 76 ad2antrr ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ≠ 0 )
78 67 74 68 77 mulne0d ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 )
79 0cxp ( ( ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 )
80 75 78 79 syl2anc ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 )
81 73 80 eqtrd ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 )
82 64 72 81 3eqtr4rd ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
83 56 82 pm2.61dane ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
84 59 adantr ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ )
85 47 adantr ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝑘 ∈ ℂ )
86 1cnd ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ )
87 84 85 86 adddid ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) )
88 84 mulid1d ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 1 ) = 𝐵 )
89 88 oveq2d ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) )
90 87 89 eqtrd ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) )
91 90 oveq2d ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 𝐴𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) )
92 57 adantr ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ )
93 simpr ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 )
94 60 adantr ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ )
95 cxpadd ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
96 92 93 94 84 95 syl211anc ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
97 91 96 eqtrd ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
98 83 97 pm2.61dane ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) )
99 expp1 ( ( ( 𝐴𝑐 𝐵 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴𝑐 𝐵 ) ) )
100 26 99 sylan ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴𝑐 𝐵 ) ) )
101 98 100 eqeq12d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴𝑐 𝐵 ) ) = ( ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴𝑐 𝐵 ) ) ) )
102 29 101 syl5ibr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) )
103 102 expcom ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) )
104 103 a2d ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) )
105 5 10 15 20 28 104 nn0ind ( 𝐶 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) ) )
106 105 com12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 ∈ ℕ0 → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) ) )
107 106 3impia ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑ 𝐶 ) )