Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑘 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑘 + 1 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝐶 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) ) |
21 |
|
cxp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
23 |
|
mul01 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 · 0 ) = 0 ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · 0 ) = 0 ) |
25 |
24
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( 𝐴 ↑𝑐 0 ) ) |
26 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
27 |
26
|
exp0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) = 1 ) |
28 |
22 25 27
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) |
29 |
|
oveq1 |
⊢ ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
30 |
|
0cn |
⊢ 0 ∈ ℂ |
31 |
|
cxp0 |
⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) |
32 |
30 31
|
ax-mp |
⊢ ( 0 ↑𝑐 0 ) = 1 |
33 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
34 |
32 33
|
eqtr4i |
⊢ ( 0 ↑𝑐 0 ) = ( 1 · 1 ) |
35 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐴 = 0 ) |
36 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
37 |
36
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( 0 · ( 𝑘 + 1 ) ) ) |
38 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
40 |
39
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
42 |
41
|
mul02d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · ( 𝑘 + 1 ) ) = 0 ) |
43 |
37 42
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = 0 ) |
44 |
35 43
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 0 ) ) |
45 |
36
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = ( 0 · 𝑘 ) ) |
46 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝑘 ∈ ℂ ) |
49 |
48
|
mul02d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · 𝑘 ) = 0 ) |
50 |
45 49
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = 0 ) |
51 |
35 50
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( 0 ↑𝑐 0 ) ) |
52 |
51 32
|
eqtrdi |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = 1 ) |
53 |
35 36
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
54 |
53 32
|
eqtrdi |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 1 ) |
55 |
52 54
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( 1 · 1 ) ) |
56 |
34 44 55
|
3eqtr4a |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
57 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
59 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
60 |
59 47
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
62 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ ) |
63 |
58 61 62
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ ) |
64 |
63
|
mul01d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) = 0 ) |
65 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 = 0 ) |
66 |
65
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
67 |
59
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
68 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
69 |
|
0cxp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
71 |
66 70
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) |
72 |
71
|
oveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) ) |
73 |
65
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) ) |
74 |
40
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
75 |
67 74
|
mulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
76 |
39
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ≠ 0 ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ≠ 0 ) |
78 |
67 74 68 77
|
mulne0d |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 ) |
79 |
|
0cxp |
⊢ ( ( ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) |
80 |
75 78 79
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) |
81 |
73 80
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) |
82 |
64 72 81
|
3eqtr4rd |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
83 |
56 82
|
pm2.61dane |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
84 |
59
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ ) |
85 |
47
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝑘 ∈ ℂ ) |
86 |
|
1cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) |
87 |
84 85 86
|
adddid |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) ) |
88 |
84
|
mulid1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 1 ) = 𝐵 ) |
89 |
88
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) |
90 |
87 89
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) |
91 |
90
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) ) |
92 |
57
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
93 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
94 |
60
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
95 |
|
cxpadd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
96 |
92 93 94 84 95
|
syl211anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
97 |
91 96
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
98 |
83 97
|
pm2.61dane |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
99 |
|
expp1 |
⊢ ( ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
100 |
26 99
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
101 |
98 100
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) ) |
102 |
29 101
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) |
103 |
102
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
104 |
103
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
105 |
5 10 15 20 28 104
|
nn0ind |
⊢ ( 𝐶 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
106 |
105
|
com12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 ∈ ℕ0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
107 |
106
|
3impia |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |