| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0 | ⊢ ( 𝐶  ∈  ℤ  ↔  ( 𝐶  ∈  ℝ  ∧  ( 𝐶  ∈  ℕ0  ∨  - 𝐶  ∈  ℕ0 ) ) ) | 
						
							| 2 |  | cxpmul2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) | 
						
							| 3 | 2 | 3expia | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐶  ∈  ℕ0  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 4 | 3 | ad4ant13 | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ℕ0  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 5 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  - 𝐶  ∈  ℕ0 ) | 
						
							| 8 |  | cxpmul2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  - 𝐶  ∈  ℕ0 )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) | 
						
							| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 1  /  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) ) )  =  ( 1  /  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 13 | 6 12 | mulneg2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐵  ·  - 𝐶 )  =  - ( 𝐵  ·  𝐶 ) ) | 
						
							| 14 | 13 | negeqd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  - ( 𝐵  ·  - 𝐶 )  =  - - ( 𝐵  ·  𝐶 ) ) | 
						
							| 15 | 6 12 | mulcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐵  ·  𝐶 )  ∈  ℂ ) | 
						
							| 16 | 15 | negnegd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  - - ( 𝐵  ·  𝐶 )  =  ( 𝐵  ·  𝐶 ) ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  - ( 𝐵  ·  - 𝐶 )  =  ( 𝐵  ·  𝐶 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 - ( 𝐵  ·  - 𝐶 ) )  =  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 19 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  𝐴  ≠  0 ) | 
						
							| 20 | 12 | negcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  - 𝐶  ∈  ℂ ) | 
						
							| 21 | 6 20 | mulcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐵  ·  - 𝐶 )  ∈  ℂ ) | 
						
							| 22 |  | cxpneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  ( 𝐵  ·  - 𝐶 )  ∈  ℂ )  →  ( 𝐴 ↑𝑐 - ( 𝐵  ·  - 𝐶 ) )  =  ( 1  /  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) ) ) ) | 
						
							| 23 | 5 19 21 22 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 - ( 𝐵  ·  - 𝐶 ) )  =  ( 1  /  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) ) ) ) | 
						
							| 24 | 18 23 | eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( 1  /  ( 𝐴 ↑𝑐 ( 𝐵  ·  - 𝐶 ) ) ) ) | 
						
							| 25 |  | cxpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  ∈  ℂ ) | 
						
							| 26 | 25 | ad4ant13 | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 𝐵 )  ∈  ℂ ) | 
						
							| 27 |  | expneg2 | ⊢ ( ( ( 𝐴 ↑𝑐 𝐵 )  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  - 𝐶  ∈  ℕ0 )  →  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 )  =  ( 1  /  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) | 
						
							| 28 | 26 12 7 27 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 )  =  ( 1  /  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) | 
						
							| 29 | 10 24 28 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℝ  ∧  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) | 
						
							| 30 | 29 | expr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ℕ0  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 31 | 4 30 | jaod | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  ∈  ℕ0  ∨  - 𝐶  ∈  ℕ0 )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 32 | 31 | expimpd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐶  ∈  ℝ  ∧  ( 𝐶  ∈  ℕ0  ∨  - 𝐶  ∈  ℕ0 ) )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 33 | 1 32 | biimtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ )  →  ( 𝐶  ∈  ℤ  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) | 
						
							| 34 | 33 | impr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℤ ) )  →  ( 𝐴 ↑𝑐 ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |