Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
cxpmuld
Metamath Proof Explorer
Description: Product of exponents law for complex exponentiation. Proposition
10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro , 30-May-2016)
Ref
Expression
Hypotheses
rpcxpcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ )
rpcxpcld.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
cxpmuld.4
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
Assertion
cxpmuld
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
rpcxpcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ )
2
rpcxpcld.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
3
cxpmuld.4
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
4
cxpmul
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) )
5
1 2 3 4
syl3anc
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) )