Metamath Proof Explorer


Theorem cxpne0d

Description: Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 ( 𝜑𝐴 ∈ ℂ )
cxpefd.2 ( 𝜑𝐴 ≠ 0 )
cxpefd.3 ( 𝜑𝐵 ∈ ℂ )
Assertion cxpne0d ( 𝜑 → ( 𝐴𝑐 𝐵 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 cxp0d.1 ( 𝜑𝐴 ∈ ℂ )
2 cxpefd.2 ( 𝜑𝐴 ≠ 0 )
3 cxpefd.3 ( 𝜑𝐵 ∈ ℂ )
4 cxpne0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 𝐵 ) ≠ 0 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝑐 𝐵 ) ≠ 0 )