Metamath Proof Explorer


Theorem cxpp1d

Description: Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 ( 𝜑𝐴 ∈ ℂ )
cxpefd.2 ( 𝜑𝐴 ≠ 0 )
cxpefd.3 ( 𝜑𝐵 ∈ ℂ )
Assertion cxpp1d ( 𝜑 → ( 𝐴𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴𝑐 𝐵 ) · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cxp0d.1 ( 𝜑𝐴 ∈ ℂ )
2 cxpefd.2 ( 𝜑𝐴 ≠ 0 )
3 cxpefd.3 ( 𝜑𝐵 ∈ ℂ )
4 cxpp1 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴𝑐 𝐵 ) · 𝐴 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴𝑐 𝐵 ) · 𝐴 ) )