Metamath Proof Explorer
Description: Complex exponentiation of a reciprocal. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpcxpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
cxprecd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
Assertion |
cxprecd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpcxpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
cxprecd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
cxprec |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |