Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
3 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
5 |
2 4
|
recid2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 1 / 𝑁 ) · 𝑁 ) = 1 ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( 𝐴 ↑𝑐 1 ) ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
8 |
|
nnrecre |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 𝑁 ) ∈ ℝ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / 𝑁 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / 𝑁 ) ∈ ℂ ) |
11 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
13 |
|
cxpmul2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝑁 ) ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) |
14 |
7 10 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) |
15 |
|
cxp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
17 |
6 14 16
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 𝐴 ) |