Step |
Hyp |
Ref |
Expression |
1 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
3 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
4 |
2 3
|
gt0ne0ii |
⊢ ( 1 / 2 ) ≠ 0 |
5 |
|
0cxp |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ≠ 0 ) → ( 0 ↑𝑐 ( 1 / 2 ) ) = 0 ) |
6 |
1 4 5
|
mp2an |
⊢ ( 0 ↑𝑐 ( 1 / 2 ) ) = 0 |
7 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
8 |
6 7
|
eqtr4i |
⊢ ( 0 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 0 ) |
9 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( 0 ↑𝑐 ( 1 / 2 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = ( √ ‘ 0 ) ) |
11 |
8 9 10
|
3eqtr4a |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
13 |
|
ax-icn |
⊢ i ∈ ℂ |
14 |
|
sqrtcl |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
16 |
|
sqmul |
⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
17 |
13 15 16
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
18 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
19 |
18
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i ↑ 2 ) = - 1 ) |
20 |
|
sqrtth |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
22 |
19 21
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( - 1 · 𝐴 ) ) |
23 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
25 |
17 22 24
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ) |
26 |
|
cxpsqrtlem |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
27 |
26
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
28 |
25 27
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℝ ) |
29 |
|
negeq0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) ) |
30 |
29
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - 𝐴 ≠ 0 ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ≠ 0 ) |
33 |
25 32
|
eqnetrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ≠ 0 ) |
34 |
|
sq0i |
⊢ ( ( i · ( √ ‘ 𝐴 ) ) = 0 → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = 0 ) |
35 |
34
|
necon3i |
⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ≠ 0 → ( i · ( √ ‘ 𝐴 ) ) ≠ 0 ) |
36 |
33 35
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( i · ( √ ‘ 𝐴 ) ) ≠ 0 ) |
37 |
26 36
|
sqgt0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 < ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
38 |
37 25
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 < - 𝐴 ) |
39 |
28 38
|
elrpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℝ+ ) |
40 |
|
logneg |
⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) |
41 |
39 40
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) |
42 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - - 𝐴 = 𝐴 ) |
44 |
43
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - - 𝐴 ) = ( log ‘ 𝐴 ) ) |
45 |
39
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) ∈ ℝ ) |
46 |
45
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) ∈ ℂ ) |
47 |
|
picn |
⊢ π ∈ ℂ |
48 |
13 47
|
mulcli |
⊢ ( i · π ) ∈ ℂ |
49 |
|
addcom |
⊢ ( ( ( log ‘ - 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ - 𝐴 ) + ( i · π ) ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) |
50 |
46 48 49
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( log ‘ - 𝐴 ) + ( i · π ) ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) |
51 |
41 44 50
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) = ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) ) |
53 |
|
adddi |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ∧ ( log ‘ - 𝐴 ) ∈ ℂ ) → ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
54 |
1 48 46 53
|
mp3an12i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( ( i · π ) + ( log ‘ - 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
55 |
52 54
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
56 |
|
2cn |
⊢ 2 ∈ ℂ |
57 |
|
2ne0 |
⊢ 2 ≠ 0 |
58 |
|
divrec2 |
⊢ ( ( ( i · π ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( i · π ) / 2 ) = ( ( 1 / 2 ) · ( i · π ) ) ) |
59 |
48 56 57 58
|
mp3an |
⊢ ( ( i · π ) / 2 ) = ( ( 1 / 2 ) · ( i · π ) ) |
60 |
13 47 56 57
|
divassi |
⊢ ( ( i · π ) / 2 ) = ( i · ( π / 2 ) ) |
61 |
59 60
|
eqtr3i |
⊢ ( ( 1 / 2 ) · ( i · π ) ) = ( i · ( π / 2 ) ) |
62 |
61
|
oveq1i |
⊢ ( ( ( 1 / 2 ) · ( i · π ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) = ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) |
63 |
55 62
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) = ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
64 |
63
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) |
65 |
47 56 57
|
divcli |
⊢ ( π / 2 ) ∈ ℂ |
66 |
13 65
|
mulcli |
⊢ ( i · ( π / 2 ) ) ∈ ℂ |
67 |
|
mulcl |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( log ‘ - 𝐴 ) ∈ ℂ ) → ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) |
68 |
1 46 67
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) |
69 |
|
efadd |
⊢ ( ( ( i · ( π / 2 ) ) ∈ ℂ ∧ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) |
70 |
66 68 69
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( i · ( π / 2 ) ) + ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) ) |
71 |
|
efhalfpi |
⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |
72 |
71
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( π / 2 ) ) ) = i ) |
73 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → - 𝐴 ∈ ℂ ) |
75 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 1 / 2 ) ∈ ℂ ) |
76 |
|
cxpef |
⊢ ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ∧ ( 1 / 2 ) ∈ ℂ ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
77 |
74 32 75 76
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) |
78 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
79 |
|
2halves |
⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
80 |
78 79
|
ax-mp |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
81 |
80
|
oveq2i |
⊢ ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( - 𝐴 ↑𝑐 1 ) |
82 |
|
cxp1 |
⊢ ( - 𝐴 ∈ ℂ → ( - 𝐴 ↑𝑐 1 ) = - 𝐴 ) |
83 |
74 82
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 1 ) = - 𝐴 ) |
84 |
81 83
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = - 𝐴 ) |
85 |
|
rpcxpcl |
⊢ ( ( - 𝐴 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ+ ) |
86 |
39 2 85
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ+ ) |
87 |
86
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) |
88 |
87
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
89 |
|
cxpadd |
⊢ ( ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ) ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
90 |
74 32 75 75 89
|
syl211anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
91 |
88 90
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( - 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
92 |
74
|
sqsqrtd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ - 𝐴 ) ↑ 2 ) = - 𝐴 ) |
93 |
84 91 92
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ) |
94 |
86
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ ∧ 0 ≤ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
95 |
39
|
rpsqrtcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - 𝐴 ) ∈ ℝ+ ) |
96 |
95
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( √ ‘ - 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ - 𝐴 ) ) ) |
97 |
|
sq11 |
⊢ ( ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℝ ∧ 0 ≤ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ∧ ( ( √ ‘ - 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ - 𝐴 ) ) ) → ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ↔ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) ) |
98 |
94 96 97
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ - 𝐴 ) ↑ 2 ) ↔ ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) ) |
99 |
93 98
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( - 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ - 𝐴 ) ) |
100 |
77 99
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) = ( √ ‘ - 𝐴 ) ) |
101 |
72 100
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( ( exp ‘ ( i · ( π / 2 ) ) ) · ( exp ‘ ( ( 1 / 2 ) · ( log ‘ - 𝐴 ) ) ) ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
102 |
64 70 101
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
103 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
104 |
1 103
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( exp ‘ ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) ) |
106 |
43
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - - 𝐴 ) = ( √ ‘ 𝐴 ) ) |
107 |
39
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → 0 ≤ - 𝐴 ) |
108 |
28 107
|
sqrtnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ - - 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
109 |
106 108
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( √ ‘ 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
110 |
102 105 109
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
111 |
110
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
112 |
80
|
oveq2i |
⊢ ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 𝐴 ↑𝑐 1 ) |
113 |
|
cxpadd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
114 |
1 1 113
|
mp3an23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
115 |
|
cxp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
116 |
115
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
117 |
112 114 116
|
3eqtr3a |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = 𝐴 ) |
118 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) |
119 |
1 118
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ) |
120 |
119
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
121 |
120
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) · ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) ) |
122 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
123 |
117 121 122
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
124 |
|
sqeqor |
⊢ ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) ) |
125 |
119 14 124
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) ) |
126 |
125
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
127 |
123 126
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ∨ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
128 |
127
|
ord |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) ) ) |
129 |
128
|
con1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = - ( √ ‘ 𝐴 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
130 |
111 129
|
pm2.61d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
131 |
130
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) ) |
132 |
12 131
|
pm2.61dne |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |