| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 2 |  | 0cxp | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 0 ↑𝑐 2 )  =  0 ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 0 ↑𝑐 2 )  =  0 | 
						
							| 4 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( √ ‘ 𝐴 )  =  ( √ ‘ 0 ) ) | 
						
							| 5 |  | sqrt0 | ⊢ ( √ ‘ 0 )  =  0 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( √ ‘ 𝐴 )  =  0 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝐴  =  0  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  ( 0 ↑𝑐 2 ) ) | 
						
							| 8 |  | id | ⊢ ( 𝐴  =  0  →  𝐴  =  0 ) | 
						
							| 9 | 3 7 8 | 3eqtr4a | ⊢ ( 𝐴  =  0  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  𝐴 ) | 
						
							| 10 | 9 | a1d | ⊢ ( 𝐴  =  0  →  ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  𝐴 ) ) | 
						
							| 11 |  | sqrtcl | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( √ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( √ ‘ 𝐴 )  =  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( √ ‘ 𝐴 )  =  0 )  →  ( √ ‘ 𝐴 )  =  0 ) | 
						
							| 15 | 13 14 | sqr00d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( √ ‘ 𝐴 )  =  0 )  →  𝐴  =  0 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 𝐴 )  =  0  →  𝐴  =  0 ) ) | 
						
							| 17 | 16 | necon3d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ≠  0  →  ( √ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( √ ‘ 𝐴 )  ≠  0 ) | 
						
							| 19 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  2  ∈  ℤ ) | 
						
							| 21 | 12 18 20 | cxpexpzd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  ( ( √ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 22 |  | sqrtth | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 ) | 
						
							| 24 | 21 23 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  𝐴 ) | 
						
							| 25 | 24 | expcom | ⊢ ( 𝐴  ≠  0  →  ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  𝐴 ) ) | 
						
							| 26 | 10 25 | pm2.61ine | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 𝐴 ) ↑𝑐 2 )  =  𝐴 ) |