| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl | ⊢ ( 𝐶  ∈  ℂ  →  - 𝐶  ∈  ℂ ) | 
						
							| 2 |  | cxpadd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  - 𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 ( 𝐵  +  - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 - 𝐶 ) ) ) | 
						
							| 3 | 1 2 | syl3an3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 ( 𝐵  +  - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 - 𝐶 ) ) ) | 
						
							| 4 |  | simp2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | simp3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 6 | 4 5 | negsubd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  +  - 𝐶 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 ( 𝐵  +  - 𝐶 ) )  =  ( 𝐴 ↑𝑐 ( 𝐵  −  𝐶 ) ) ) | 
						
							| 8 |  | simp1l | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | simp1r | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ≠  0 ) | 
						
							| 10 |  | cxpneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 - 𝐶 )  =  ( 1  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
						
							| 11 | 8 9 5 10 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 - 𝐶 )  =  ( 1  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 1  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) ) | 
						
							| 13 |  | cxpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  ∈  ℂ ) | 
						
							| 14 | 8 4 13 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐵 )  ∈  ℂ ) | 
						
							| 15 |  | cxpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐶 )  ∈  ℂ ) | 
						
							| 16 | 8 5 15 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐶 )  ∈  ℂ ) | 
						
							| 17 |  | cxpne0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐶 )  ≠  0 ) | 
						
							| 18 | 8 9 5 17 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 𝐶 )  ≠  0 ) | 
						
							| 19 | 14 16 18 | divrecd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴 ↑𝑐 𝐵 )  /  ( 𝐴 ↑𝑐 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 1  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) ) | 
						
							| 20 | 12 19 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 - 𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
						
							| 21 | 3 7 20 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 ( 𝐵  −  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  /  ( 𝐴 ↑𝑐 𝐶 ) ) ) |