Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐶 ∈ ℂ → - 𝐶 ∈ ℂ ) |
2 |
|
cxpadd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ - 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) ) |
3 |
1 2
|
syl3an3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) ) |
4 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
5 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
6 |
4 5
|
negsubd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
7 |
6
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 − 𝐶 ) ) ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
9 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) |
10 |
|
cxpneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
11 |
8 9 5 10
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
13 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
14 |
8 4 13
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
15 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
16 |
8 5 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
17 |
|
cxpne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ≠ 0 ) |
18 |
8 9 5 17
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ≠ 0 ) |
19 |
14 16 18
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
20 |
12 19
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
21 |
3 7 20
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) ) |