| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
| 2 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 4 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = 0 ↔ 𝐵 = 0 ) ) |
| 5 |
4
|
ifbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = 0 , 1 , 0 ) = if ( 𝐵 = 0 , 1 , 0 ) ) |
| 6 |
1
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) |
| 7 |
3 6
|
oveq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 · ( log ‘ 𝑥 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 9 |
2 5 8
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 10 |
|
df-cxp |
⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |
| 11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 12 |
|
0cn |
⊢ 0 ∈ ℂ |
| 13 |
11 12
|
ifcli |
⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ |
| 14 |
13
|
elexi |
⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ V |
| 15 |
|
fvex |
⊢ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ V |
| 16 |
14 15
|
ifex |
⊢ if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ∈ V |
| 17 |
9 10 16
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |