Step |
Hyp |
Ref |
Expression |
1 |
|
cyccom.c |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ) |
2 |
|
cyccom.d |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
3 |
|
cyccom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
4 |
|
cyccom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐶 ) |
5 |
|
cyccom.z |
⊢ ( 𝜑 → 𝑍 ⊆ ℂ ) |
6 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑌 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑐 = 𝑌 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑋 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑐 = 𝑋 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
12 |
11
|
rspccv |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑌 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑦 · 𝐴 ) ) ) |
16 |
15
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) |
17 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) ↔ ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) ) |
18 |
5
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℂ ) ) |
19 |
18
|
com12 |
⊢ ( 𝑥 ∈ 𝑍 → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
21 |
20
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑥 ∈ ℂ ) |
22 |
5
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) |
23 |
22
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) ) |
24 |
23
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑦 ∈ ℂ ) |
25 |
21 24
|
addcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
26 |
25
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 + 𝑛 ) = ( 𝑥 + 𝑛 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑛 ) · 𝐴 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
33 |
30 32
|
eqeq12d |
⊢ ( 𝑚 = 𝑥 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑥 + 𝑛 ) = ( 𝑥 + 𝑦 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑦 ) · 𝐴 ) ) |
36 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑛 = 𝑦 → ( ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) ) |
39 |
33 38
|
rspc2va |
⊢ ( ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
40 |
27 28 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
41 |
27
|
ancomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑚 = 𝑦 → ( 𝑚 + 𝑛 ) = ( 𝑦 + 𝑛 ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑛 ) · 𝐴 ) ) |
44 |
|
oveq1 |
⊢ ( 𝑚 = 𝑦 → ( 𝑚 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
45 |
44
|
oveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
46 |
43 45
|
eqeq12d |
⊢ ( 𝑚 = 𝑦 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
47 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑦 + 𝑛 ) = ( 𝑦 + 𝑥 ) ) |
48 |
47
|
oveq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
49 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
51 |
48 50
|
eqeq12d |
⊢ ( 𝑛 = 𝑥 → ( ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
52 |
46 51
|
rspc2va |
⊢ ( ( ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
53 |
41 28 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
54 |
26 40 53
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
55 |
|
oveq12 |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
56 |
|
oveq12 |
⊢ ( ( 𝑌 = ( 𝑦 · 𝐴 ) ∧ 𝑋 = ( 𝑥 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
57 |
56
|
ancoms |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
58 |
55 57
|
eqeq12d |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ↔ ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
59 |
54 58
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
60 |
59
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
61 |
17 60
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
62 |
61
|
expd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
63 |
16 62
|
syl7bi |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
64 |
13 63
|
syld |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
65 |
64
|
com23 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
66 |
9 65
|
syld |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
67 |
4 3 66
|
mp2d |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |