| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cyccom.c | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  𝐶 ∃ 𝑥  ∈  𝑍 𝑐  =  ( 𝑥  ·  𝐴 ) ) | 
						
							| 2 |  | cyccom.d | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 ∀ 𝑛  ∈  𝑍 ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 3 |  | cyccom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐶 ) | 
						
							| 4 |  | cyccom.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐶 ) | 
						
							| 5 |  | cyccom.z | ⊢ ( 𝜑  →  𝑍  ⊆  ℂ ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑐  =  𝑌  →  ( 𝑐  =  ( 𝑥  ·  𝐴 )  ↔  𝑌  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑐  =  𝑌  →  ( ∃ 𝑥  ∈  𝑍 𝑐  =  ( 𝑥  ·  𝐴 )  ↔  ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 8 | 7 | rspccv | ⊢ ( ∀ 𝑐  ∈  𝐶 ∃ 𝑥  ∈  𝑍 𝑐  =  ( 𝑥  ·  𝐴 )  →  ( 𝑌  ∈  𝐶  →  ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ( 𝑌  ∈  𝐶  →  ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑐  =  𝑋  →  ( 𝑐  =  ( 𝑥  ·  𝐴 )  ↔  𝑋  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑐  =  𝑋  →  ( ∃ 𝑥  ∈  𝑍 𝑐  =  ( 𝑥  ·  𝐴 )  ↔  ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 12 | 11 | rspccv | ⊢ ( ∀ 𝑐  ∈  𝐶 ∃ 𝑥  ∈  𝑍 𝑐  =  ( 𝑥  ·  𝐴 )  →  ( 𝑋  ∈  𝐶  →  ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐶  →  ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ·  𝐴 )  =  ( 𝑦  ·  𝐴 ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑌  =  ( 𝑥  ·  𝐴 )  ↔  𝑌  =  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 16 | 15 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 )  ↔  ∃ 𝑦  ∈  𝑍 𝑌  =  ( 𝑦  ·  𝐴 ) ) | 
						
							| 17 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝑍 ∃ 𝑦  ∈  𝑍 ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  ↔  ( ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  ∃ 𝑦  ∈  𝑍 𝑌  =  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 18 | 5 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑍  →  𝑥  ∈  ℂ ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( 𝑥  ∈  𝑍  →  ( 𝜑  →  𝑥  ∈  ℂ ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 )  →  ( 𝜑  →  𝑥  ∈  ℂ ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 22 | 5 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑍  →  𝑦  ∈  ℂ ) ) | 
						
							| 23 | 22 | a1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑍  →  ( 𝑦  ∈  𝑍  →  𝑦  ∈  ℂ ) ) ) | 
						
							| 24 | 23 | imp32 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 25 | 21 24 | addcomd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝐴 )  =  ( ( 𝑦  +  𝑥 )  ·  𝐴 ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) ) | 
						
							| 28 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ∀ 𝑚  ∈  𝑍 ∀ 𝑛  ∈  𝑍 ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑚  =  𝑥  →  ( 𝑚  +  𝑛 )  =  ( 𝑥  +  𝑛 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑚  =  𝑥  →  ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑥  +  𝑛 )  ·  𝐴 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑚  =  𝑥  →  ( 𝑚  ·  𝐴 )  =  ( 𝑥  ·  𝐴 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑚  =  𝑥  →  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 33 | 30 32 | eqeq12d | ⊢ ( 𝑚  =  𝑥  →  ( ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  ↔  ( ( 𝑥  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑥  +  𝑛 )  =  ( 𝑥  +  𝑦 ) ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( 𝑛  =  𝑦  →  ( ( 𝑥  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑥  +  𝑦 )  ·  𝐴 ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  ·  𝐴 )  =  ( 𝑦  ·  𝐴 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑛  =  𝑦  →  ( ( 𝑥  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 38 | 35 37 | eqeq12d | ⊢ ( 𝑛  =  𝑦  →  ( ( ( 𝑥  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  ↔  ( ( 𝑥  +  𝑦 )  ·  𝐴 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) ) ) ) | 
						
							| 39 | 33 38 | rspc2va | ⊢ ( ( ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  𝑍 ∀ 𝑛  ∈  𝑍 ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝐴 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 40 | 27 28 39 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝐴 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 41 | 27 | ancomd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( 𝑦  ∈  𝑍  ∧  𝑥  ∈  𝑍 ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑚  =  𝑦  →  ( 𝑚  +  𝑛 )  =  ( 𝑦  +  𝑛 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝑚  =  𝑦  →  ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑦  +  𝑛 )  ·  𝐴 ) ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑚  =  𝑦  →  ( 𝑚  ·  𝐴 )  =  ( 𝑦  ·  𝐴 ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( 𝑚  =  𝑦  →  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 46 | 43 45 | eqeq12d | ⊢ ( 𝑚  =  𝑦  →  ( ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  ↔  ( ( 𝑦  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑦  +  𝑛 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑛  =  𝑥  →  ( ( 𝑦  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑦  +  𝑥 )  ·  𝐴 ) ) | 
						
							| 49 |  | oveq1 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑛  ·  𝐴 )  =  ( 𝑥  ·  𝐴 ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝑛  =  𝑥  →  ( ( 𝑦  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 51 | 48 50 | eqeq12d | ⊢ ( 𝑛  =  𝑥  →  ( ( ( 𝑦  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) )  ↔  ( ( 𝑦  +  𝑥 )  ·  𝐴 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) ) | 
						
							| 52 | 46 51 | rspc2va | ⊢ ( ( ( 𝑦  ∈  𝑍  ∧  𝑥  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  𝑍 ∀ 𝑛  ∈  𝑍 ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) )  →  ( ( 𝑦  +  𝑥 )  ·  𝐴 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 53 | 41 28 52 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( ( 𝑦  +  𝑥 )  ·  𝐴 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 54 | 26 40 53 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 55 |  | oveq12 | ⊢ ( ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( 𝑋  +  𝑌 )  =  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) ) ) | 
						
							| 56 |  | oveq12 | ⊢ ( ( 𝑌  =  ( 𝑦  ·  𝐴 )  ∧  𝑋  =  ( 𝑥  ·  𝐴 ) )  →  ( 𝑌  +  𝑋 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 57 | 56 | ancoms | ⊢ ( ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( 𝑌  +  𝑋 )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 58 | 55 57 | eqeq12d | ⊢ ( ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 )  ↔  ( ( 𝑥  ·  𝐴 )  +  ( 𝑦  ·  𝐴 ) )  =  ( ( 𝑦  ·  𝐴 )  +  ( 𝑥  ·  𝐴 ) ) ) ) | 
						
							| 59 | 54 58 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  𝑍 ) )  →  ( ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) | 
						
							| 60 | 59 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑍 ∃ 𝑦  ∈  𝑍 ( 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) | 
						
							| 61 | 17 60 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 )  ∧  ∃ 𝑦  ∈  𝑍 𝑌  =  ( 𝑦  ·  𝐴 ) )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) | 
						
							| 62 | 61 | expd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 )  →  ( ∃ 𝑦  ∈  𝑍 𝑌  =  ( 𝑦  ·  𝐴 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) ) | 
						
							| 63 | 16 62 | syl7bi | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑍 𝑋  =  ( 𝑥  ·  𝐴 )  →  ( ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) ) | 
						
							| 64 | 13 63 | syld | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) ) | 
						
							| 65 | 64 | com23 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑍 𝑌  =  ( 𝑥  ·  𝐴 )  →  ( 𝑋  ∈  𝐶  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) ) | 
						
							| 66 | 9 65 | syld | ⊢ ( 𝜑  →  ( 𝑌  ∈  𝐶  →  ( 𝑋  ∈  𝐶  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) ) ) | 
						
							| 67 | 4 3 66 | mp2d | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) |