Metamath Proof Explorer


Theorem cyclprop

Description: The properties of a cycle: A cycle is a closed path. (Contributed by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion cyclprop ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 iscycl ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )
2 1 biimpi ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )