Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg2.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
cycsubg2.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
cycsubg2.f |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) |
4 |
|
cycsubg2.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) ) |
6 |
5
|
bicomd |
⊢ ( 𝐴 ∈ 𝑋 → ( { 𝐴 } ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( { 𝐴 } ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
8 |
7
|
rabbidv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } = { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
9 |
8
|
inteqd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
10 |
1
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) ) |
11 |
10
|
acsmred |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
12 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) |
13 |
4
|
mrcval |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } ) |
15 |
1 2 3
|
cycsubg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
16 |
9 14 15
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran 𝐹 ) |