| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg2.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubg2.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubg2.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 4 |  | cycsubg2.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | snssg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  𝑦  ↔  { 𝐴 }  ⊆  𝑦 ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( 𝐴  ∈  𝑋  →  ( { 𝐴 }  ⊆  𝑦  ↔  𝐴  ∈  𝑦 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( { 𝐴 }  ⊆  𝑦  ↔  𝐴  ∈  𝑦 ) ) | 
						
							| 8 | 7 | rabbidv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  { 𝐴 }  ⊆  𝑦 }  =  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑦 } ) | 
						
							| 9 | 8 | inteqd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ∩  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  { 𝐴 }  ⊆  𝑦 }  =  ∩  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑦 } ) | 
						
							| 10 | 1 | subgacs | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 11 | 10 | acsmred | ⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 12 |  | snssi | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 13 | 4 | mrcval | ⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ 𝑋 )  ∧  { 𝐴 }  ⊆  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  =  ∩  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  { 𝐴 }  ⊆  𝑦 } ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  =  ∩  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  { 𝐴 }  ⊆  𝑦 } ) | 
						
							| 15 | 1 2 3 | cycsubg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ran  𝐹  =  ∩  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  𝐴  ∈  𝑦 } ) | 
						
							| 16 | 9 14 15 | 3eqtr4d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐾 ‘ { 𝐴 } )  =  ran  𝐹 ) |