Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg2cl.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
cycsubg2cl.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
cycsubg2cl.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
4 |
1
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) ) |
5 |
4
|
acsmred |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
7 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ 𝑋 ) |
8 |
7
|
snssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → { 𝐴 } ⊆ 𝑋 ) |
9 |
3
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
10 |
6 8 9
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
11 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
12 |
6 3 8
|
mrcssidd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) |
13 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
16 |
2
|
subgmulgcl |
⊢ ( ( ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) → ( 𝑁 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
17 |
10 11 15 16
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |