Metamath Proof Explorer


Theorem cycsubgcld

Description: The cyclic subgroup generated by A is a subgroup. Deduction related to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubgcld.1 𝐵 = ( Base ‘ 𝐺 )
cycsubgcld.2 · = ( .g𝐺 )
cycsubgcld.3 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
cycsubgcld.4 ( 𝜑𝐺 ∈ Grp )
cycsubgcld.5 ( 𝜑𝐴𝐵 )
Assertion cycsubgcld ( 𝜑 → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 cycsubgcld.1 𝐵 = ( Base ‘ 𝐺 )
2 cycsubgcld.2 · = ( .g𝐺 )
3 cycsubgcld.3 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
4 cycsubgcld.4 ( 𝜑𝐺 ∈ Grp )
5 cycsubgcld.5 ( 𝜑𝐴𝐵 )
6 1 2 3 cycsubgcl ( ( 𝐺 ∈ Grp ∧ 𝐴𝐵 ) → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) )
7 4 5 6 syl2anc ( 𝜑 → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) )
8 7 simpld ( 𝜑 → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) )