| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubgcyg.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubgcyg.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubgcyg.s | ⊢ 𝑆  =  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 5 |  | eqid | ⊢ ( .g ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 7 | 1 2 6 | cycsubgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 9 | 3 8 | eqeltrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝐺  ↾s  𝑆 )  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 11 | 10 | subggrp | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp ) | 
						
							| 13 | 7 | simprd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 14 | 13 3 | eleqtrrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑆 ) | 
						
							| 15 | 10 | subgbas | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 16 | 9 15 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 17 | 14 16 | eleqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 18 | 16 | eleq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) ) | 
						
							| 19 | 18 | biimpar | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑆 ) | 
						
							| 21 | 20 3 | eleqtrdi | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ·  𝐴 )  =  ( 𝑛  ·  𝐴 ) ) | 
						
							| 23 | 22 | cbvmptv | ⊢ ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) | 
						
							| 24 |  | ovex | ⊢ ( 𝑛  ·  𝐴 )  ∈  V | 
						
							| 25 | 23 24 | elrnmpti | ⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  ℤ  ↦  ( 𝑥  ·  𝐴 ) )  ↔  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝐴 ) ) | 
						
							| 26 | 21 25 | sylib | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝐴 ) ) | 
						
							| 27 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑛  ∈  ℤ )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℤ ) | 
						
							| 29 | 14 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑛  ∈  ℤ )  →  𝐴  ∈  𝑆 ) | 
						
							| 30 | 2 10 5 | subgmulg | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑛  ∈  ℤ  ∧  𝐴  ∈  𝑆 )  →  ( 𝑛  ·  𝐴 )  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) | 
						
							| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ·  𝐴 )  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  ∧  𝑛  ∈  ℤ )  →  ( 𝑦  =  ( 𝑛  ·  𝐴 )  ↔  𝑦  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) ) | 
						
							| 33 | 32 | rexbidva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝐴 )  ↔  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) ) | 
						
							| 34 | 26 33 | mpbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑆 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) | 
						
							| 35 | 19 34 | syldan | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝐴 ) ) | 
						
							| 36 | 4 5 12 17 35 | iscygd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐺  ↾s  𝑆 )  ∈  CycGrp ) |