Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
3 |
1 2
|
iscyg3 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
4 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
5 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Grp ) |
7 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑛 = 𝑖 → ( 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
10 |
9
|
biimpi |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
15 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
16 |
15
|
anim1ci |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
17 |
|
df-3an |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ↔ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
20 |
1 2 19
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
21 |
14 18 20
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
22 |
21
|
ralrimivva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
25 |
|
simp2 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
26 |
|
simp3 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) |
27 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
28 |
27
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ℤ ⊆ ℂ ) |
29 |
13 24 25 26 28
|
cyccom |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
30 |
4 5 6 29
|
isabld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
31 |
30
|
r19.29an |
⊢ ( ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
32 |
3 31
|
sylbi |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) |