| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 3 | 1 2 | iscyg3 | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 4 |  | eqidd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  𝐺  ∈  Grp ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑛  =  𝑖  →  ( 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  ↔  𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑖  ∈  ℤ 𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  →  ∃ 𝑖  ∈  ℤ 𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 11 | 10 | ralimi | ⊢ ( ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  →  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑖  ∈  ℤ 𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑖  ∈  ℤ 𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑖  ∈  ℤ 𝑦  =  ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  𝐺  ∈  Grp ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 15 | anim1ci | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  ( ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 17 |  | df-3an | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ↔  ( ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 20 | 1 2 19 | mulgdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( 𝑚  +  𝑛 ) ( .g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 21 | 14 18 20 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑚  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  ( ( 𝑚  +  𝑛 ) ( .g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 22 | 21 | ralrimivva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ∀ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ℤ ( ( 𝑚  +  𝑛 ) ( .g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  ∀ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ℤ ( ( 𝑚  +  𝑛 ) ( .g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  ∀ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ℤ ( ( 𝑚  +  𝑛 ) ( .g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 25 |  | simp2 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  𝑎  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 26 |  | simp3 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  𝑏  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 27 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  ℤ  ⊆  ℂ ) | 
						
							| 29 | 13 24 25 26 28 | cyccom | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  ∧  𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) | 
						
							| 30 | 4 5 6 29 | isabld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  𝐺  ∈  Abel ) | 
						
							| 31 | 30 | r19.29an | ⊢ ( ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  →  𝐺  ∈  Abel ) | 
						
							| 32 | 3 31 | sylbi | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Abel ) |