Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
3 |
1 2
|
iscyg3 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
4 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
5 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Grp ) |
7 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ 𝑎 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ 𝑎 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑎 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
11 |
10
|
cbvrexv |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑎 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) |
12 |
8 11
|
bitrdi |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
13 |
12
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) → ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) → ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑦 = 𝑏 → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
17 |
16
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝑏 ∈ ( Base ‘ 𝐺 ) → ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑏 ∈ ( Base ‘ 𝐺 ) → ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
19 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ↔ ( ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
20 |
|
zcn |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℂ ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝑚 ∈ ℂ ) |
22 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
23 |
22
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℂ ) |
24 |
21 23
|
addcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑚 + 𝑛 ) = ( 𝑛 + 𝑚 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑛 + 𝑚 ) ( .g ‘ 𝐺 ) 𝑥 ) ) |
26 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
27 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝑚 ∈ ℤ ) |
28 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
29 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
30 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
31 |
1 2 30
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
32 |
26 27 28 29 31
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
33 |
1 2 30
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑛 + 𝑚 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
34 |
26 28 27 29 33
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑛 + 𝑚 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
35 |
25 32 34
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
36 |
|
oveq12 |
⊢ ( ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
37 |
|
oveq12 |
⊢ ( ( 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
38 |
37
|
ancoms |
⊢ ( ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
39 |
36 38
|
eqeq12d |
⊢ ( ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ↔ ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
40 |
35 39
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
41 |
40
|
rexlimdvva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
42 |
19 41
|
syl5bir |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( ( ∃ 𝑚 ∈ ℤ 𝑎 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ 𝑏 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
44 |
14 18 43
|
syl2and |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
45 |
44
|
3impib |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
46 |
4 5 6 45
|
isabld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
47 |
46
|
r19.29an |
⊢ ( ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
48 |
3 47
|
sylbi |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) |