Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
3 |
1 2
|
iscyg |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
5 |
|
ovex |
⊢ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) |
7 |
5 6
|
fnmpti |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) Fn ℤ |
8 |
|
df-fo |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 ↔ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) Fn ℤ ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) |
9 |
7 8
|
mpbiran |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
10 |
|
omelon |
⊢ ω ∈ On |
11 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
12 |
10 11
|
ax-mp |
⊢ ω ∈ dom card |
13 |
|
znnen |
⊢ ℤ ≈ ℕ |
14 |
|
nnenom |
⊢ ℕ ≈ ω |
15 |
13 14
|
entri |
⊢ ℤ ≈ ω |
16 |
|
ennum |
⊢ ( ℤ ≈ ω → ( ℤ ∈ dom card ↔ ω ∈ dom card ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ℤ ∈ dom card ↔ ω ∈ dom card ) |
18 |
12 17
|
mpbir |
⊢ ℤ ∈ dom card |
19 |
|
fodomnum |
⊢ ( ℤ ∈ dom card → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ℤ ) ) |
20 |
18 19
|
mp1i |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ℤ ) ) |
21 |
|
domentr |
⊢ ( ( 𝐵 ≼ ℤ ∧ ℤ ≈ ω ) → 𝐵 ≼ ω ) |
22 |
15 21
|
mpan2 |
⊢ ( 𝐵 ≼ ℤ → 𝐵 ≼ ω ) |
23 |
20 22
|
syl6 |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵 → 𝐵 ≼ ω ) ) |
24 |
9 23
|
syl5bir |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐵 ≼ ω ) ) |
25 |
24
|
rexlimdva |
⊢ ( 𝐺 ∈ CycGrp → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐵 ≼ ω ) ) |
26 |
4 25
|
mpd |
⊢ ( 𝐺 ∈ CycGrp → 𝐵 ≼ ω ) |