Metamath Proof Explorer


Theorem cygctb

Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis cygctb.1 𝐵 = ( Base ‘ 𝐺 )
Assertion cygctb ( 𝐺 ∈ CycGrp → 𝐵 ≼ ω )

Proof

Step Hyp Ref Expression
1 cygctb.1 𝐵 = ( Base ‘ 𝐺 )
2 eqid ( .g𝐺 ) = ( .g𝐺 )
3 1 2 iscyg ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵 ) )
4 3 simprbi ( 𝐺 ∈ CycGrp → ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵 )
5 ovex ( 𝑛 ( .g𝐺 ) 𝑥 ) ∈ V
6 eqid ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) )
7 5 6 fnmpti ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) Fn ℤ
8 df-fo ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) : ℤ –onto𝐵 ↔ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) Fn ℤ ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵 ) )
9 7 8 mpbiran ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) : ℤ –onto𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵 )
10 omelon ω ∈ On
11 onenon ( ω ∈ On → ω ∈ dom card )
12 10 11 ax-mp ω ∈ dom card
13 znnen ℤ ≈ ℕ
14 nnenom ℕ ≈ ω
15 13 14 entri ℤ ≈ ω
16 ennum ( ℤ ≈ ω → ( ℤ ∈ dom card ↔ ω ∈ dom card ) )
17 15 16 ax-mp ( ℤ ∈ dom card ↔ ω ∈ dom card )
18 12 17 mpbir ℤ ∈ dom card
19 fodomnum ( ℤ ∈ dom card → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) : ℤ –onto𝐵𝐵 ≼ ℤ ) )
20 18 19 mp1i ( ( 𝐺 ∈ CycGrp ∧ 𝑥𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) : ℤ –onto𝐵𝐵 ≼ ℤ ) )
21 domentr ( ( 𝐵 ≼ ℤ ∧ ℤ ≈ ω ) → 𝐵 ≼ ω )
22 15 21 mpan2 ( 𝐵 ≼ ℤ → 𝐵 ≼ ω )
23 20 22 syl6 ( ( 𝐺 ∈ CycGrp ∧ 𝑥𝐵 ) → ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) : ℤ –onto𝐵𝐵 ≼ ω ) )
24 9 23 syl5bir ( ( 𝐺 ∈ CycGrp ∧ 𝑥𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵𝐵 ≼ ω ) )
25 24 rexlimdva ( 𝐺 ∈ CycGrp → ( ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = 𝐵𝐵 ≼ ω ) )
26 4 25 mpd ( 𝐺 ∈ CycGrp → 𝐵 ≼ ω )