| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscyg3.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 4 |  | cyggeninv.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 5 | 1 2 3 | iscyggen2 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 6 | 5 | simprbda | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 | 1 4 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 8 | 6 7 | syldan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 9 | 5 | simplbda | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ·  𝑋 )  =  ( 𝑚  ·  𝑋 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  =  ( 𝑛  ·  𝑋 )  ↔  𝑦  =  ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 12 | 11 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 )  ↔  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝑚  ·  𝑋 ) ) | 
						
							| 13 |  | znegcl | ⊢ ( 𝑚  ∈  ℤ  →  - 𝑚  ∈  ℤ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  - 𝑚  ∈  ℤ ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  𝑚  ∈  ℤ ) | 
						
							| 16 | 15 | zcnd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  𝑚  ∈  ℂ ) | 
						
							| 17 | 16 | negnegd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  - - 𝑚  =  𝑚 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  ( - - 𝑚  ·  𝑋 )  =  ( 𝑚  ·  𝑋 ) ) | 
						
							| 19 |  | simplll | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 20 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  𝑋  ∈  𝐵 ) | 
						
							| 21 | 1 2 4 | mulgneg2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  - 𝑚  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - - 𝑚  ·  𝑋 )  =  ( - 𝑚  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 22 | 19 14 20 21 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  ( - - 𝑚  ·  𝑋 )  =  ( - 𝑚  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 23 | 18 22 | eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  ( 𝑚  ·  𝑋 )  =  ( - 𝑚  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑛  =  - 𝑚  →  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) )  =  ( - 𝑚  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 25 | 24 | rspceeqv | ⊢ ( ( - 𝑚  ∈  ℤ  ∧  ( 𝑚  ·  𝑋 )  =  ( - 𝑚  ·  ( 𝑁 ‘ 𝑋 ) ) )  →  ∃ 𝑛  ∈  ℤ ( 𝑚  ·  𝑋 )  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 26 | 14 23 25 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  ∃ 𝑛  ∈  ℤ ( 𝑚  ·  𝑋 )  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑦  =  ( 𝑚  ·  𝑋 )  →  ( 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) )  ↔  ( 𝑚  ·  𝑋 )  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑦  =  ( 𝑚  ·  𝑋 )  →  ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) )  ↔  ∃ 𝑛  ∈  ℤ ( 𝑚  ·  𝑋 )  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 29 | 26 28 | syl5ibrcom | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  ∧  𝑚  ∈  ℤ )  →  ( 𝑦  =  ( 𝑚  ·  𝑋 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 30 | 29 | rexlimdva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  →  ( ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝑚  ·  𝑋 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 31 | 12 30 | biimtrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  ∧  𝑦  ∈  𝐵 )  →  ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 32 | 31 | ralimdva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 33 | 9 32 | mpd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 34 | 1 2 3 | iscyggen2 | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑁 ‘ 𝑋 )  ∈  𝐸  ↔  ( ( 𝑁 ‘ 𝑋 )  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( ( 𝑁 ‘ 𝑋 )  ∈  𝐸  ↔  ( ( 𝑁 ‘ 𝑋 )  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  ( 𝑁 ‘ 𝑋 ) ) ) ) ) | 
						
							| 36 | 8 33 35 | mpbir2and | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐸 ) |