Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
iscyg3.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
4 |
|
cyggeninv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
1 2 3
|
iscyggen2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
6 |
5
|
simprbda |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → 𝑋 ∈ 𝐵 ) |
7 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
8 |
6 7
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
5
|
simplbda |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝑋 ) = ( 𝑚 · 𝑋 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑛 · 𝑋 ) ↔ 𝑦 = ( 𝑚 · 𝑋 ) ) ) |
12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑋 ) ) |
13 |
|
znegcl |
⊢ ( 𝑚 ∈ ℤ → - 𝑚 ∈ ℤ ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → - 𝑚 ∈ ℤ ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) |
16 |
15
|
zcnd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
17 |
16
|
negnegd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → - - 𝑚 = 𝑚 ) |
18 |
17
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( - - 𝑚 · 𝑋 ) = ( 𝑚 · 𝑋 ) ) |
19 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝐺 ∈ Grp ) |
20 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) |
21 |
1 2 4
|
mulgneg2 |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
22 |
19 14 20 21
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( - - 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
23 |
18 22
|
eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑛 = - 𝑚 → ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
25 |
24
|
rspceeqv |
⊢ ( ( - 𝑚 ∈ ℤ ∧ ( 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
26 |
14 23 25
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
27 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝑚 · 𝑋 ) → ( 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ↔ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑦 = ( 𝑚 · 𝑋 ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
29 |
26 28
|
syl5ibrcom |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑦 = ( 𝑚 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
30 |
29
|
rexlimdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
31 |
12 30
|
syl5bi |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
32 |
31
|
ralimdva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
33 |
9 32
|
mpd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
34 |
1 2 3
|
iscyggen2 |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
36 |
8 33 35
|
mpbir2and |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ) |