| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscyg3.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 4 |  | cyggenod.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 | 1 2 3 | iscyggen | ⊢ ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 7 |  | simplll | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℤ ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 1 2 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑛  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 12 | 11 | fmpttd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) : ℤ ⟶ 𝐵 ) | 
						
							| 13 | 12 | frnd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 ) | 
						
							| 14 | 6 13 | ssfid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ) | 
						
							| 15 |  | hashen | ⊢ ( ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) )  =  ( ♯ ‘ 𝐵 )  ↔  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵 ) ) | 
						
							| 16 | 14 6 15 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) )  =  ( ♯ ‘ 𝐵 )  ↔  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) | 
						
							| 18 | 1 4 2 17 | dfod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑂 ‘ 𝑋 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 ) ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑂 ‘ 𝑋 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 ) ) | 
						
							| 20 | 14 | iftrued | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 )  =  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 21 | 19 20 | eqtr2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) )  =  ( 𝑂 ‘ 𝑋 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) )  =  ( ♯ ‘ 𝐵 )  ↔  ( 𝑂 ‘ 𝑋 )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 23 |  | fisseneq | ⊢ ( ( 𝐵  ∈  Fin  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵 )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) | 
						
							| 24 | 23 | 3expia | ⊢ ( ( 𝐵  ∈  Fin  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 25 |  | enrefg | ⊢ ( 𝐵  ∈  Fin  →  𝐵  ≈  𝐵 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐵  ∈  Fin  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 )  →  𝐵  ≈  𝐵 ) | 
						
							| 27 |  | breq1 | ⊢ ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵  ↔  𝐵  ≈  𝐵 ) ) | 
						
							| 28 | 26 27 | syl5ibrcom | ⊢ ( ( 𝐵  ∈  Fin  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵 ) ) | 
						
							| 29 | 24 28 | impbid | ⊢ ( ( 𝐵  ∈  Fin  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵  ↔  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 30 | 6 13 29 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ≈  𝐵  ↔  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 31 | 16 22 30 | 3bitr3rd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  ∧  𝑋  ∈  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  ↔  ( 𝑂 ‘ 𝑋 )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 32 | 31 | pm5.32da | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  →  ( ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝑂 ‘ 𝑋 )  =  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 33 | 5 32 | bitrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  →  ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝑂 ‘ 𝑋 )  =  ( ♯ ‘ 𝐵 ) ) ) ) |