Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
iscyg3.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
4 |
|
cyggenod.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
1 2 3
|
iscyggen |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) |
8 |
1 4 2 7
|
dfod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
10 |
5
|
simprbi |
⊢ ( 𝑋 ∈ 𝐸 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) |
12 |
11
|
eleq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
13 |
11
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
14 |
12 13
|
ifbieq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
15 |
9 14
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑂 ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |