Metamath Proof Explorer


Theorem cyggex

Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cygctb.1 𝐵 = ( Base ‘ 𝐺 )
cyggex.o 𝐸 = ( gEx ‘ 𝐺 )
Assertion cyggex ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cygctb.1 𝐵 = ( Base ‘ 𝐺 )
2 cyggex.o 𝐸 = ( gEx ‘ 𝐺 )
3 1 2 cyggex2 ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) )
4 iftrue ( 𝐵 ∈ Fin → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = ( ♯ ‘ 𝐵 ) )
5 3 4 sylan9eq ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) )