Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
Assertion | cyggex | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
3 | 1 2 | cyggex2 | ⊢ ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
4 | iftrue | ⊢ ( 𝐵 ∈ Fin → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = ( ♯ ‘ 𝐵 ) ) | |
5 | 3 4 | sylan9eq | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |