Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cyggex.o |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } |
5 |
1 3 4
|
iscyg2 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
6 |
|
n0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
7 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ⊆ 𝐵 |
8 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
9 |
7 8
|
sselid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑦 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
11 |
1 3 4 10
|
cyggenod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
12 |
9 11
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
13 |
12
|
ex |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ) |
14 |
1 2
|
gexcl |
⊢ ( 𝐺 ∈ Grp → 𝐸 ∈ ℕ0 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 ∈ ℕ0 ) |
16 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
18 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
20 |
17 19
|
ifclda |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
21 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐵 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) → ( 𝐸 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
22 |
|
breq2 |
⊢ ( 0 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) → ( 𝐸 ∥ 0 ↔ 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
23 |
1 2
|
gexdvds3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ 𝐵 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
25 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 𝐸 ∈ ℕ0 ) |
26 |
|
nn0z |
⊢ ( 𝐸 ∈ ℕ0 → 𝐸 ∈ ℤ ) |
27 |
|
dvds0 |
⊢ ( 𝐸 ∈ ℤ → 𝐸 ∥ 0 ) |
28 |
25 26 27
|
3syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 𝐸 ∥ 0 ) |
29 |
21 22 24 28
|
ifbothda |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
30 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
31 |
1 2 10
|
gexod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝐸 ) |
32 |
31
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝐸 ) |
33 |
30 32
|
eqbrtrrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∥ 𝐸 ) |
34 |
|
dvdseq |
⊢ ( ( ( 𝐸 ∈ ℕ0 ∧ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) ∧ ( 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∧ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∥ 𝐸 ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
35 |
15 20 29 33 34
|
syl22anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
36 |
35
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
37 |
13 36
|
syld |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
38 |
37
|
exlimdv |
⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑦 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
39 |
6 38
|
syl5bi |
⊢ ( 𝐺 ∈ Grp → ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
40 |
39
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
41 |
5 40
|
sylbi |
⊢ ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |