Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cyggex.o |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
1 2
|
cyggex |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |
4 |
3
|
expcom |
⊢ ( 𝐵 ∈ Fin → ( 𝐺 ∈ CycGrp → 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐺 ∈ CycGrp → 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Abel ) |
7 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Grp ) |
9 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
10 |
1 2
|
gexcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∈ ℕ ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐸 ∈ ℕ ) |
12 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
13 |
1 2 12
|
gexex |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ) |
14 |
6 11 13
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |
16 |
15
|
eqeq2d |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) |
17 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
18 |
|
eqid |
⊢ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } = { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } |
19 |
1 17 18 12
|
cyggenod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
20 |
8 9 19
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
21 |
|
ne0i |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } → { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) |
22 |
1 17 18
|
iscyg2 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
23 |
22
|
baib |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ CycGrp ↔ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
24 |
8 23
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝐺 ∈ CycGrp ↔ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
25 |
21 24
|
syl5ibr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } → 𝐺 ∈ CycGrp ) ) |
26 |
20 25
|
sylbird |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ CycGrp ) ) |
27 |
26
|
expdimp |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) → 𝐺 ∈ CycGrp ) ) |
28 |
16 27
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 → 𝐺 ∈ CycGrp ) ) |
29 |
28
|
rexlimdva |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 → 𝐺 ∈ CycGrp ) ) |
30 |
14 29
|
mpd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ CycGrp ) |
31 |
30
|
ex |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐸 = ( ♯ ‘ 𝐵 ) → 𝐺 ∈ CycGrp ) ) |
32 |
5 31
|
impbid |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐺 ∈ CycGrp ↔ 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |