| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygctb.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cygctb.c |
⊢ 𝐶 = ( Base ‘ 𝐻 ) |
| 3 |
1 2
|
gicen |
⊢ ( 𝐺 ≃𝑔 𝐻 → 𝐵 ≈ 𝐶 ) |
| 4 |
|
eqid |
⊢ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
| 5 |
|
eqid |
⊢ ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 6 |
1 4 5
|
cygzn |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 8 |
|
enfi |
⊢ ( 𝐵 ≈ 𝐶 → ( 𝐵 ∈ Fin ↔ 𝐶 ∈ Fin ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( 𝐵 ∈ Fin ↔ 𝐶 ∈ Fin ) ) |
| 10 |
|
hasheni |
⊢ ( 𝐵 ≈ 𝐶 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐶 ) ) |
| 12 |
9 11
|
ifbieq1d |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 14 |
|
eqid |
⊢ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) |
| 15 |
|
eqid |
⊢ ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) = ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) |
| 16 |
2 14 15
|
cygzn |
⊢ ( 𝐻 ∈ CycGrp → 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ) |
| 18 |
|
gicsym |
⊢ ( 𝐻 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) → ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ≃𝑔 𝐻 ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) ≃𝑔 𝐻 ) |
| 20 |
13 19
|
eqbrtrd |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ≃𝑔 𝐻 ) |
| 21 |
|
gictr |
⊢ ( ( 𝐺 ≃𝑔 ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ∧ ( ℤ/nℤ ‘ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ≃𝑔 𝐻 ) → 𝐺 ≃𝑔 𝐻 ) |
| 22 |
7 20 21
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) ∧ 𝐵 ≈ 𝐶 ) → 𝐺 ≃𝑔 𝐻 ) |
| 23 |
22
|
ex |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) → ( 𝐵 ≈ 𝐶 → 𝐺 ≃𝑔 𝐻 ) ) |
| 24 |
3 23
|
impbid2 |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp ) → ( 𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶 ) ) |