Metamath Proof Explorer


Theorem cyggrp

Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion cyggrp ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
2 eqid ( .g𝐺 ) = ( .g𝐺 )
3 1 2 iscyg ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g𝐺 ) 𝑥 ) ) = ( Base ‘ 𝐺 ) ) )
4 3 simplbi ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp )