Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | cyggrp | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
2 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
3 | 1 2 | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( Base ‘ 𝐺 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |