Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } |
6 |
1 4 5
|
iscyg2 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐺 ∈ CycGrp → { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
8 |
|
n0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
9 |
7 8
|
sylib |
⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑔 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
10 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
11 |
|
simpl |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝐺 ∈ CycGrp ) |
12 |
|
simpr |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
13 |
|
eqid |
⊢ ran ( 𝑚 ∈ ℤ ↦ 〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) , ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 ) = ran ( 𝑚 ∈ ℤ ↦ 〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) , ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 ) |
14 |
1 2 3 4 10 5 11 12 13
|
cygznlem3 |
⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝐺 ≃𝑔 𝑌 ) |
15 |
9 14
|
exlimddv |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌 ) |