Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
cygzn.m |
⊢ · = ( .g ‘ 𝐺 ) |
5 |
|
cygzn.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
6 |
|
cygzn.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
7 |
|
cygzn.g |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
8 |
|
cygzn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
9 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
13 |
10 12
|
ifclda |
⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
14 |
2 13
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑁 ∈ ℕ0 ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝐾 ∈ ℤ ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
18 |
3 5
|
zndvds |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
20 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
22 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
23 |
1 4 6 22
|
cyggenod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
24 |
21 8 23
|
syl2anc |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
25 |
24 2
|
eqtr4di |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = 𝑁 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = 𝑁 ) |
27 |
26
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
29 |
1 4 6
|
iscyggen |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
30 |
29
|
simplbi |
⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
31 |
8 30
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑋 ∈ 𝐵 ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
34 |
1 22 4 33
|
odcong |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |
35 |
28 32 16 17 34
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |
36 |
19 27 35
|
3bitr2d |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |