Metamath Proof Explorer


Theorem cygznlem2

Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses cygzn.b 𝐵 = ( Base ‘ 𝐺 )
cygzn.n 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 )
cygzn.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
cygzn.m · = ( .g𝐺 )
cygzn.l 𝐿 = ( ℤRHom ‘ 𝑌 )
cygzn.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
cygzn.g ( 𝜑𝐺 ∈ CycGrp )
cygzn.x ( 𝜑𝑋𝐸 )
cygzn.f 𝐹 = ran ( 𝑚 ∈ ℤ ↦ ⟨ ( 𝐿𝑚 ) , ( 𝑚 · 𝑋 ) ⟩ )
Assertion cygznlem2 ( ( 𝜑𝑀 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿𝑀 ) ) = ( 𝑀 · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cygzn.b 𝐵 = ( Base ‘ 𝐺 )
2 cygzn.n 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 )
3 cygzn.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 cygzn.m · = ( .g𝐺 )
5 cygzn.l 𝐿 = ( ℤRHom ‘ 𝑌 )
6 cygzn.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
7 cygzn.g ( 𝜑𝐺 ∈ CycGrp )
8 cygzn.x ( 𝜑𝑋𝐸 )
9 cygzn.f 𝐹 = ran ( 𝑚 ∈ ℤ ↦ ⟨ ( 𝐿𝑚 ) , ( 𝑚 · 𝑋 ) ⟩ )
10 fvexd ( ( 𝜑𝑚 ∈ ℤ ) → ( 𝐿𝑚 ) ∈ V )
11 ovexd ( ( 𝜑𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) ∈ V )
12 fveq2 ( 𝑚 = 𝑀 → ( 𝐿𝑚 ) = ( 𝐿𝑀 ) )
13 oveq1 ( 𝑚 = 𝑀 → ( 𝑚 · 𝑋 ) = ( 𝑀 · 𝑋 ) )
14 1 2 3 4 5 6 7 8 9 cygznlem2a ( 𝜑𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 )
15 14 ffund ( 𝜑 → Fun 𝐹 )
16 9 10 11 12 13 15 fliftval ( ( 𝜑𝑀 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿𝑀 ) ) = ( 𝑀 · 𝑋 ) )