| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cygzn.n | ⊢ 𝑁  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) | 
						
							| 3 |  | cygzn.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 4 |  | cygzn.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | cygzn.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 6 |  | cygzn.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 7 |  | cygzn.g | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) | 
						
							| 8 |  | cygzn.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐸 ) | 
						
							| 9 |  | cygzn.f | ⊢ 𝐹  =  ran  ( 𝑚  ∈  ℤ  ↦  〈 ( 𝐿 ‘ 𝑚 ) ,  ( 𝑚  ·  𝑋 ) 〉 ) | 
						
							| 10 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℤ )  →  ( 𝐿 ‘ 𝑚 )  ∈  V ) | 
						
							| 11 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℤ )  →  ( 𝑚  ·  𝑋 )  ∈  V ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 𝐿 ‘ 𝑚 )  =  ( 𝐿 ‘ 𝑀 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  ·  𝑋 )  =  ( 𝑀  ·  𝑋 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) | 
						
							| 15 | 14 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 16 | 9 10 11 12 13 15 | fliftval | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑀 ) )  =  ( 𝑀  ·  𝑋 ) ) |