Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
cygzn.m |
⊢ · = ( .g ‘ 𝐺 ) |
5 |
|
cygzn.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
6 |
|
cygzn.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
7 |
|
cygzn.g |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
8 |
|
cygzn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
9 |
|
cygzn.f |
⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) |
10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝐿 ‘ 𝑚 ) ∈ V ) |
11 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) ∈ V ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑀 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
cygznlem2a |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |
15 |
14
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
16 |
9 10 11 12 13 15
|
fliftval |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑀 ) ) = ( 𝑀 · 𝑋 ) ) |