Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
cygzn.m |
⊢ · = ( .g ‘ 𝐺 ) |
5 |
|
cygzn.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
6 |
|
cygzn.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
7 |
|
cygzn.g |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
8 |
|
cygzn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
9 |
|
cygzn.f |
⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) |
10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝐿 ‘ 𝑚 ) ∈ V ) |
11 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝐺 ∈ Grp ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) |
15 |
6
|
ssrab3 |
⊢ 𝐸 ⊆ 𝐵 |
16 |
15 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) |
18 |
1 4
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
19 |
13 14 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
20 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑘 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
22 |
1 2 3 4 5 6 7 8
|
cygznlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑘 ) ↔ ( 𝑚 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) ) |
23 |
22
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑘 ) → ( 𝑚 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) ) |
24 |
23
|
exp32 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℤ → ( 𝑘 ∈ ℤ → ( ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑘 ) → ( 𝑚 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) ) ) ) |
25 |
24
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑘 ) ) ) → ( 𝑚 · 𝑋 ) = ( 𝑘 · 𝑋 ) ) |
26 |
9 10 19 20 21 25
|
fliftfund |
⊢ ( 𝜑 → Fun 𝐹 ) |
27 |
9 10 19
|
fliftf |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ran ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) ⟶ 𝐵 ) ) |
28 |
26 27
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ran ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) ⟶ 𝐵 ) |
29 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
31 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
33 |
30 32
|
ifclda |
⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
34 |
2 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
36 |
3 35 5
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
38 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
40 |
39
|
feqmptd |
⊢ ( 𝜑 → 𝐿 = ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) ) |
41 |
40
|
rneqd |
⊢ ( 𝜑 → ran 𝐿 = ran ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) ) |
42 |
|
forn |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → ran 𝐿 = ( Base ‘ 𝑌 ) ) |
43 |
37 42
|
syl |
⊢ ( 𝜑 → ran 𝐿 = ( Base ‘ 𝑌 ) ) |
44 |
41 43
|
eqtr3d |
⊢ ( 𝜑 → ran ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) = ( Base ‘ 𝑌 ) ) |
45 |
44
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : ran ( 𝑚 ∈ ℤ ↦ ( 𝐿 ‘ 𝑚 ) ) ⟶ 𝐵 ↔ 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) ) |
46 |
28 45
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |