Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
cygzn.m |
⊢ · = ( .g ‘ 𝐺 ) |
5 |
|
cygzn.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
6 |
|
cygzn.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
7 |
|
cygzn.g |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
8 |
|
cygzn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
9 |
|
cygzn.f |
⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
17 |
14 16
|
ifclda |
⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
18 |
2 17
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
19 |
3
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
20 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
21 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
22 |
18 19 20 21
|
4syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
23 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
24 |
7 23
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
25 |
1 2 3 4 5 6 7 8 9
|
cygznlem2a |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |
26 |
3 10 5
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
27 |
18 26
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
28 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) |
29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) |
30 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) |
31 |
27 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) |
32 |
29 31
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) |
33 |
|
reeanv |
⊢ ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) |
34 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑗 ∈ ℤ ) |
37 |
1 4 6
|
iscyggen |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
38 |
37
|
simplbi |
⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
39 |
8 38
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑋 ∈ 𝐵 ) |
41 |
1 4 12
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
42 |
34 35 36 40 41
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
43 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
44 |
5
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
45 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
46 |
43 20 44 45
|
4syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
48 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
49 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
50 |
48 49 11
|
ghmlin |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
51 |
47 35 36 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
52 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
53 |
|
zaddcl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
54 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
55 |
53 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
56 |
52 55
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
57 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
58 |
57
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
59 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
60 |
59
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
61 |
58 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
62 |
42 56 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
63 |
|
oveq12 |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
64 |
63
|
fveq2d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
66 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
67 |
65 66
|
oveqan12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
68 |
64 67
|
eqeq12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) ) |
69 |
62 68
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
70 |
69
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
71 |
33 70
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
72 |
71
|
imp |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
73 |
32 72
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
74 |
10 1 11 12 22 24 25 73
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ) |
75 |
58 60
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
76 |
1 2 3 4 5 6 7 8
|
cygznlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
77 |
75 76
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
78 |
77
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
79 |
65 66
|
eqeqan12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
80 |
|
eqeq12 |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 = 𝑏 ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
81 |
79 80
|
imbi12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) ) |
82 |
78 81
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
83 |
82
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
84 |
33 83
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
85 |
84
|
imp |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
86 |
32 85
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
87 |
86
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
88 |
|
dff13 |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
89 |
25 87 88
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ) |
90 |
1 4 6
|
iscyggen2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
91 |
24 90
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
92 |
8 91
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) |
93 |
92
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) |
94 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) |
95 |
94
|
eqeq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝑧 = ( 𝑛 · 𝑋 ) ↔ 𝑧 = ( 𝑗 · 𝑋 ) ) ) |
96 |
95
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) ) |
97 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
98 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
99 |
97 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
100 |
99
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ) |
101 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
102 |
101
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
103 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
104 |
103
|
rspceeqv |
⊢ ( ( ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
105 |
100 102 104
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
106 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
107 |
106
|
rexbidv |
⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
108 |
105 107
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
109 |
108
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
110 |
96 109
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
111 |
110
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
112 |
93 111
|
mpd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) |
113 |
|
dffo3 |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
114 |
25 112 113
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) |
115 |
|
df-f1o |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ∧ 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) ) |
116 |
89 114 115
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) |
117 |
10 1
|
isgim |
⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ↔ ( 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ∧ 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) ) |
118 |
74 116 117
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ) |
119 |
|
brgici |
⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) → 𝑌 ≃𝑔 𝐺 ) |
120 |
|
gicsym |
⊢ ( 𝑌 ≃𝑔 𝐺 → 𝐺 ≃𝑔 𝑌 ) |
121 |
118 119 120
|
3syl |
⊢ ( 𝜑 → 𝐺 ≃𝑔 𝑌 ) |