Metamath Proof Explorer


Theorem cygznlem3

Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygzn.b 𝐵 = ( Base ‘ 𝐺 )
cygzn.n 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 )
cygzn.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
cygzn.m · = ( .g𝐺 )
cygzn.l 𝐿 = ( ℤRHom ‘ 𝑌 )
cygzn.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
cygzn.g ( 𝜑𝐺 ∈ CycGrp )
cygzn.x ( 𝜑𝑋𝐸 )
cygzn.f 𝐹 = ran ( 𝑚 ∈ ℤ ↦ ⟨ ( 𝐿𝑚 ) , ( 𝑚 · 𝑋 ) ⟩ )
Assertion cygznlem3 ( 𝜑𝐺𝑔 𝑌 )

Proof

Step Hyp Ref Expression
1 cygzn.b 𝐵 = ( Base ‘ 𝐺 )
2 cygzn.n 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 )
3 cygzn.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 cygzn.m · = ( .g𝐺 )
5 cygzn.l 𝐿 = ( ℤRHom ‘ 𝑌 )
6 cygzn.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
7 cygzn.g ( 𝜑𝐺 ∈ CycGrp )
8 cygzn.x ( 𝜑𝑋𝐸 )
9 cygzn.f 𝐹 = ran ( 𝑚 ∈ ℤ ↦ ⟨ ( 𝐿𝑚 ) , ( 𝑚 · 𝑋 ) ⟩ )
10 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
11 eqid ( +g𝑌 ) = ( +g𝑌 )
12 eqid ( +g𝐺 ) = ( +g𝐺 )
13 hashcl ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
14 13 adantl ( ( 𝜑𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
15 0nn0 0 ∈ ℕ0
16 15 a1i ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 )
17 14 16 ifclda ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 )
18 2 17 eqeltrid ( 𝜑𝑁 ∈ ℕ0 )
19 3 zncrng ( 𝑁 ∈ ℕ0𝑌 ∈ CRing )
20 crngring ( 𝑌 ∈ CRing → 𝑌 ∈ Ring )
21 ringgrp ( 𝑌 ∈ Ring → 𝑌 ∈ Grp )
22 18 19 20 21 4syl ( 𝜑𝑌 ∈ Grp )
23 cyggrp ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp )
24 7 23 syl ( 𝜑𝐺 ∈ Grp )
25 1 2 3 4 5 6 7 8 9 cygznlem2a ( 𝜑𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 )
26 3 10 5 znzrhfo ( 𝑁 ∈ ℕ0𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) )
27 18 26 syl ( 𝜑𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) )
28 foelrn ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) )
29 27 28 sylan ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) )
30 foelrn ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) )
31 27 30 sylan ( ( 𝜑𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) )
32 29 31 anim12dan ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) )
33 reeanv ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) )
34 24 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐺 ∈ Grp )
35 simprl ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑖 ∈ ℤ )
36 simprr ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑗 ∈ ℤ )
37 1 4 6 iscyggen ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) )
38 37 simplbi ( 𝑋𝐸𝑋𝐵 )
39 8 38 syl ( 𝜑𝑋𝐵 )
40 39 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑋𝐵 )
41 1 4 12 mulgdir ( ( 𝐺 ∈ Grp ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g𝐺 ) ( 𝑗 · 𝑋 ) ) )
42 34 35 36 40 41 syl13anc ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g𝐺 ) ( 𝑗 · 𝑋 ) ) )
43 18 19 syl ( 𝜑𝑌 ∈ CRing )
44 5 zrhrhm ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) )
45 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) )
46 43 20 44 45 4syl ( 𝜑𝐿 ∈ ( ℤring GrpHom 𝑌 ) )
47 46 adantr ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) )
48 zringbas ℤ = ( Base ‘ ℤring )
49 zringplusg + = ( +g ‘ ℤring )
50 48 49 11 ghmlin ( ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) )
51 47 35 36 50 syl3anc ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) )
52 51 fveq2d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( 𝐹 ‘ ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) ) )
53 zaddcl ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ )
54 1 2 3 4 5 6 7 8 9 cygznlem2 ( ( 𝜑 ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) )
55 53 54 sylan2 ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) )
56 52 55 eqtr3d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) )
57 1 2 3 4 5 6 7 8 9 cygznlem2 ( ( 𝜑𝑖 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝑖 · 𝑋 ) )
58 57 adantrr ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝑖 · 𝑋 ) )
59 1 2 3 4 5 6 7 8 9 cygznlem2 ( ( 𝜑𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿𝑗 ) ) = ( 𝑗 · 𝑋 ) )
60 59 adantrl ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿𝑗 ) ) = ( 𝑗 · 𝑋 ) )
61 58 60 oveq12d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) ( +g𝐺 ) ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) = ( ( 𝑖 · 𝑋 ) ( +g𝐺 ) ( 𝑗 · 𝑋 ) ) )
62 42 56 61 3eqtr4d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) ( +g𝐺 ) ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) )
63 oveq12 ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝑎 ( +g𝑌 ) 𝑏 ) = ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) )
64 63 fveq2d ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) ) )
65 fveq2 ( 𝑎 = ( 𝐿𝑖 ) → ( 𝐹𝑎 ) = ( 𝐹 ‘ ( 𝐿𝑖 ) ) )
66 fveq2 ( 𝑏 = ( 𝐿𝑗 ) → ( 𝐹𝑏 ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) )
67 65 66 oveqan12d ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) = ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) ( +g𝐺 ) ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) )
68 64 67 eqeq12d ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ↔ ( 𝐹 ‘ ( ( 𝐿𝑖 ) ( +g𝑌 ) ( 𝐿𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) ( +g𝐺 ) ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) ) )
69 62 68 syl5ibrcom ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ) )
70 69 rexlimdvva ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ) )
71 33 70 syl5bir ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ) )
72 71 imp ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) )
73 32 72 syldan ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑌 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) )
74 10 1 11 12 22 24 25 73 isghmd ( 𝜑𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) )
75 58 60 eqeq12d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) )
76 1 2 3 4 5 6 7 8 cygznlem1 ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐿𝑖 ) = ( 𝐿𝑗 ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) )
77 75 76 bitr4d ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) ↔ ( 𝐿𝑖 ) = ( 𝐿𝑗 ) ) )
78 77 biimpd ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) → ( 𝐿𝑖 ) = ( 𝐿𝑗 ) ) )
79 65 66 eqeqan12d ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) )
80 eqeq12 ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( 𝑎 = 𝑏 ↔ ( 𝐿𝑖 ) = ( 𝐿𝑗 ) ) )
81 79 80 imbi12d ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝐹 ‘ ( 𝐿𝑖 ) ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) → ( 𝐿𝑖 ) = ( 𝐿𝑗 ) ) ) )
82 78 81 syl5ibrcom ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
83 82 rexlimdvva ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿𝑖 ) ∧ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
84 33 83 syl5bir ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
85 84 imp ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿𝑗 ) ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
86 32 85 syldan ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
87 86 ralrimivva ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
88 dff13 ( 𝐹 : ( Base ‘ 𝑌 ) –1-1𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
89 25 87 88 sylanbrc ( 𝜑𝐹 : ( Base ‘ 𝑌 ) –1-1𝐵 )
90 1 4 6 iscyggen2 ( 𝐺 ∈ Grp → ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ∀ 𝑧𝐵𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) )
91 24 90 syl ( 𝜑 → ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ∀ 𝑧𝐵𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) )
92 8 91 mpbid ( 𝜑 → ( 𝑋𝐵 ∧ ∀ 𝑧𝐵𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) )
93 92 simprd ( 𝜑 → ∀ 𝑧𝐵𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) )
94 oveq1 ( 𝑛 = 𝑗 → ( 𝑛 · 𝑋 ) = ( 𝑗 · 𝑋 ) )
95 94 eqeq2d ( 𝑛 = 𝑗 → ( 𝑧 = ( 𝑛 · 𝑋 ) ↔ 𝑧 = ( 𝑗 · 𝑋 ) ) )
96 95 cbvrexvw ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) )
97 27 adantr ( ( 𝜑𝑧𝐵 ) → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) )
98 fof ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) )
99 97 98 syl ( ( 𝜑𝑧𝐵 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) )
100 99 ffvelrnda ( ( ( 𝜑𝑧𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐿𝑗 ) ∈ ( Base ‘ 𝑌 ) )
101 59 adantlr ( ( ( 𝜑𝑧𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿𝑗 ) ) = ( 𝑗 · 𝑋 ) )
102 101 eqcomd ( ( ( 𝜑𝑧𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) )
103 fveq2 ( 𝑎 = ( 𝐿𝑗 ) → ( 𝐹𝑎 ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) )
104 103 rspceeqv ( ( ( 𝐿𝑗 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿𝑗 ) ) ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹𝑎 ) )
105 100 102 104 syl2anc ( ( ( 𝜑𝑧𝐵 ) ∧ 𝑗 ∈ ℤ ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹𝑎 ) )
106 eqeq1 ( 𝑧 = ( 𝑗 · 𝑋 ) → ( 𝑧 = ( 𝐹𝑎 ) ↔ ( 𝑗 · 𝑋 ) = ( 𝐹𝑎 ) ) )
107 106 rexbidv ( 𝑧 = ( 𝑗 · 𝑋 ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹𝑎 ) ) )
108 105 107 syl5ibrcom ( ( ( 𝜑𝑧𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ) )
109 108 rexlimdva ( ( 𝜑𝑧𝐵 ) → ( ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ) )
110 96 109 syl5bi ( ( 𝜑𝑧𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ) )
111 110 ralimdva ( 𝜑 → ( ∀ 𝑧𝐵𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∀ 𝑧𝐵𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ) )
112 93 111 mpd ( 𝜑 → ∀ 𝑧𝐵𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) )
113 dffo3 ( 𝐹 : ( Base ‘ 𝑌 ) –onto𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑧𝐵𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹𝑎 ) ) )
114 25 112 113 sylanbrc ( 𝜑𝐹 : ( Base ‘ 𝑌 ) –onto𝐵 )
115 df-f1o ( 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1𝐵𝐹 : ( Base ‘ 𝑌 ) –onto𝐵 ) )
116 89 114 115 sylanbrc ( 𝜑𝐹 : ( Base ‘ 𝑌 ) –1-1-onto𝐵 )
117 10 1 isgim ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ↔ ( 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ∧ 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto𝐵 ) )
118 74 116 117 sylanbrc ( 𝜑𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) )
119 brgici ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) → 𝑌𝑔 𝐺 )
120 gicsym ( 𝑌𝑔 𝐺𝐺𝑔 𝑌 )
121 118 119 120 3syl ( 𝜑𝐺𝑔 𝑌 )