| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0fi |
⊢ ∅ ∈ Fin |
| 2 |
|
id |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ 𝑉 ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
snid |
⊢ ∅ ∈ { ∅ } |
| 5 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ 𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
| 6 |
4 5
|
eleqtrrid |
⊢ ( 𝑅 ∈ 𝑉 → ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 7 |
|
eqid |
⊢ ( ∅ matToPolyMat 𝑅 ) = ( ∅ matToPolyMat 𝑅 ) |
| 8 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
| 12 |
7 8 9 10 11
|
mat2pmatval |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) ) ) |
| 13 |
1 2 6 12
|
mp3an2i |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) ) ) |
| 14 |
|
mpo0 |
⊢ ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) ) = ∅ |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ∅ ) |