Metamath Proof Explorer


Theorem d0mat2pmat

Description: The transformed empty set as matrix of dimenson 0 is the empty set (i.e., the polynomial matrix of dimension 0). (Contributed by AV, 4-Aug-2019)

Ref Expression
Assertion d0mat2pmat ( 𝑅𝑉 → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ∅ )

Proof

Step Hyp Ref Expression
1 0fin ∅ ∈ Fin
2 id ( 𝑅𝑉𝑅𝑉 )
3 0ex ∅ ∈ V
4 3 snid ∅ ∈ { ∅ }
5 mat0dimbas0 ( 𝑅𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } )
6 4 5 eleqtrrid ( 𝑅𝑉 → ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) )
7 eqid ( ∅ matToPolyMat 𝑅 ) = ( ∅ matToPolyMat 𝑅 )
8 eqid ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 )
9 eqid ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) )
10 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
11 eqid ( algSc ‘ ( Poly1𝑅 ) ) = ( algSc ‘ ( Poly1𝑅 ) )
12 7 8 9 10 11 mat2pmatval ( ( ∅ ∈ Fin ∧ 𝑅𝑉 ∧ ∅ ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ) → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑥𝑦 ) ) ) )
13 1 2 6 12 mp3an2i ( 𝑅𝑉 → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑥𝑦 ) ) ) )
14 mpo0 ( 𝑥 ∈ ∅ , 𝑦 ∈ ∅ ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑥𝑦 ) ) ) = ∅
15 13 14 eqtrdi ( 𝑅𝑉 → ( ( ∅ matToPolyMat 𝑅 ) ‘ ∅ ) = ∅ )