Step |
Hyp |
Ref |
Expression |
1 |
|
d1mat2pmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
d1mat2pmat.b |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
3 |
|
d1mat2pmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
d1mat2pmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
5 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
6 |
|
eleq1 |
⊢ ( 𝑁 = { 𝐴 } → ( 𝑁 ∈ Fin ↔ { 𝐴 } ∈ Fin ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝑁 = { 𝐴 } → 𝑁 ∈ Fin ) |
8 |
7
|
adantr |
⊢ ( ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
10 |
|
simp1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ 𝑉 ) |
11 |
|
simp3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
13 |
1 12 2 3 4
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) |
14 |
9 10 11 13
|
syl3anc |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) |
15 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
16 |
|
fvexd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) |
17 |
15 15 16
|
3jca |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) ) |
20 |
|
eqid |
⊢ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
21 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝐴 → ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑆 ‘ ( 𝐴 𝑀 𝑗 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑗 = 𝐴 → ( 𝐴 𝑀 𝑗 ) = ( 𝐴 𝑀 𝐴 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑗 = 𝐴 → ( 𝑆 ‘ ( 𝐴 𝑀 𝑗 ) ) = ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ) |
24 |
20 21 23
|
mposn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) → ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) |
25 |
19 24
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) |
26 |
|
mpoeq12 |
⊢ ( ( 𝑁 = { 𝐴 } ∧ 𝑁 = { 𝐴 } ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝑁 = { 𝐴 } ∧ 𝑁 = { 𝐴 } ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) ) |
28 |
27
|
anidms |
⊢ ( 𝑁 = { 𝐴 } → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) ) |
31 |
25 30
|
mpbird |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) |
32 |
14 31
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = { 〈 〈 𝐴 , 𝐴 〉 , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) 〉 } ) |