Metamath Proof Explorer


Theorem d1mat2pmat

Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses d1mat2pmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
d1mat2pmat.b 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
d1mat2pmat.p 𝑃 = ( Poly1𝑅 )
d1mat2pmat.s 𝑆 = ( algSc ‘ 𝑃 )
Assertion d1mat2pmat ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } )

Proof

Step Hyp Ref Expression
1 d1mat2pmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
2 d1mat2pmat.b 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
3 d1mat2pmat.p 𝑃 = ( Poly1𝑅 )
4 d1mat2pmat.s 𝑆 = ( algSc ‘ 𝑃 )
5 snfi { 𝐴 } ∈ Fin
6 eleq1 ( 𝑁 = { 𝐴 } → ( 𝑁 ∈ Fin ↔ { 𝐴 } ∈ Fin ) )
7 5 6 mpbiri ( 𝑁 = { 𝐴 } → 𝑁 ∈ Fin )
8 7 adantr ( ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) → 𝑁 ∈ Fin )
9 8 3ad2ant2 ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → 𝑁 ∈ Fin )
10 simp1 ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → 𝑅𝑉 )
11 simp3 ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → 𝑀𝐵 )
12 eqid ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 )
13 1 12 2 3 4 mat2pmatval ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) )
14 9 10 11 13 syl3anc ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) )
15 id ( 𝐴𝑉𝐴𝑉 )
16 fvexd ( 𝐴𝑉 → ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V )
17 15 15 16 3jca ( 𝐴𝑉 → ( 𝐴𝑉𝐴𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) )
18 17 adantl ( ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) → ( 𝐴𝑉𝐴𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) )
19 18 3ad2ant2 ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝐴𝑉𝐴𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) )
20 eqid ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) )
21 fvoveq1 ( 𝑖 = 𝐴 → ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( 𝑆 ‘ ( 𝐴 𝑀 𝑗 ) ) )
22 oveq2 ( 𝑗 = 𝐴 → ( 𝐴 𝑀 𝑗 ) = ( 𝐴 𝑀 𝐴 ) )
23 22 fveq2d ( 𝑗 = 𝐴 → ( 𝑆 ‘ ( 𝐴 𝑀 𝑗 ) ) = ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) )
24 20 21 23 mposn ( ( 𝐴𝑉𝐴𝑉 ∧ ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ∈ V ) → ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } )
25 19 24 syl ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } )
26 mpoeq12 ( ( 𝑁 = { 𝐴 } ∧ 𝑁 = { 𝐴 } ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) )
27 26 eqeq1d ( ( 𝑁 = { 𝐴 } ∧ 𝑁 = { 𝐴 } ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ) )
28 27 anidms ( 𝑁 = { 𝐴 } → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ) )
29 28 adantr ( ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ) )
30 29 3ad2ant2 ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ↔ ( 𝑖 ∈ { 𝐴 } , 𝑗 ∈ { 𝐴 } ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } ) )
31 25 30 mpbird ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑆 ‘ ( 𝑖 𝑀 𝑗 ) ) ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } )
32 14 31 eqtrd ( ( 𝑅𝑉 ∧ ( 𝑁 = { 𝐴 } ∧ 𝐴𝑉 ) ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) = { ⟨ ⟨ 𝐴 , 𝐴 ⟩ , ( 𝑆 ‘ ( 𝐴 𝑀 𝐴 ) ) ⟩ } )