Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dalawlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dalawlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dalawlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalawlem2.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
7 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ) |
8 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
10 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑃 ) ) |
11 |
6 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑃 ) ) |
12 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
13 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ∈ 𝐴 ) |
14 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑄 ) ) |
15 |
6 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑄 ) ) |
16 |
11 15
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) = ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ) |
17 |
16
|
breq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ↔ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
18 |
17
|
notbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ↔ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ) ) |
19 |
16
|
breq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ↔ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ) ) |
20 |
19
|
notbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ↔ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ) ) |
21 |
16
|
breq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ↔ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) |
22 |
21
|
notbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ↔ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) |
23 |
18 20 22
|
3anbi123d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ↔ ( ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ↔ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
25 |
7 24
|
mtbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ) |
26 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) |
27 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑆 ) ) |
28 |
6 9 8 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑆 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑆 ) ) |
29 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑇 ) ) |
30 |
6 13 12 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑇 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑇 ) ) |
31 |
28 30
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
32 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑈 ∈ 𝐴 ) |
33 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
34 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑈 ) ) |
35 |
6 32 33 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑈 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑈 ) ) |
36 |
26 31 35
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑅 ) ) |
37 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) |
38 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) |
39 |
1 2 3 4 5
|
dalawlem14 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑆 ∨ 𝑃 ) ∧ ( 𝑇 ∨ 𝑄 ) ) ≤ ( 𝑈 ∨ 𝑅 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ∨ ( ( 𝑈 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑃 ) ) ) ) |
40 |
6 25 36 37 38 39
|
syl311anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ∨ ( ( 𝑈 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑃 ) ) ) ) |
41 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
42 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
43 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
6 8 12 43
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
6 9 13 45
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
42 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
48 |
41 44 46 47
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
49 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
6 12 33 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
6 13 32 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
42 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
54 |
41 50 52 53
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
55 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
6 33 8 55
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
42 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
58 |
6 32 9 57
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
42 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) = ( ( 𝑈 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑃 ) ) ) |
60 |
41 56 58 59
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) = ( ( 𝑈 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑃 ) ) ) |
61 |
54 60
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) = ( ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ∨ ( ( 𝑈 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑃 ) ) ) ) |
62 |
40 48 61
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ 𝑂 ∧ ( ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑈 ∨ 𝑆 ) ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |