| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalawlem.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							dalawlem.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							dalawlem.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							dalawlem.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								6
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  →  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								6 8 9 10
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								5 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								7 11 14 15
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								5 4
							 | 
							atbase | 
							⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑆  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								7 16 19 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								6 8 22 23
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 26 | 
							
								5 4
							 | 
							atbase | 
							⊢ ( 𝑈  ∈  𝐴  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								7 24 27 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								6 22 12 30
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  ( 𝑈  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								6 25 17 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑈  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑈  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 35 | 
							
								7 31 33 34
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 36 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 37 | 
							
								7 29 35 36
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 38 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 39 | 
							
								6 9 25 38
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 40 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 41 | 
							
								7 24 39 40
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 42 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								7 41 35 42
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								5 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								8 44
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								7 45 27 46
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 48 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 49 | 
							
								6 12 17 48
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 50 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 51 | 
							
								7 49 45 50
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								7 47 51 52
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 54 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 55 | 
							
								7 14 53 54
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 56 | 
							
								5 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 57 | 
							
								22 56
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 58 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 59 | 
							
								7 57 29 58
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 60 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 61 | 
							
								7 14 59 60
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 62 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 63 | 
							
								7 47 14 62
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 64 | 
							
								5 1 2 3
							 | 
							latmlej22 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∨  𝑆 ) )  | 
						
						
							| 65 | 
							
								7 19 16 63 64
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∨  𝑆 ) )  | 
						
						
							| 66 | 
							
								5 2
							 | 
							latjass | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑆  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∨  𝑆 )  =  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 67 | 
							
								7 47 14 19 66
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∧  𝑈 )  ∨  𝑃 )  ∨  𝑆 )  =  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 68 | 
							
								65 67
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 69 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								7 11 49 69
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 71 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 72 | 
							
								7 70 14 71
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 73 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 74 | 
							
								6 12 8 73
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 75 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 76 | 
							
								6 12 17 75
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 77 | 
							
								5 1 3
							 | 
							latmlem2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑆  ≤  ( 𝑃  ∨  𝑆 )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 78 | 
							
								7 19 49 16 77
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑆  ≤  ( 𝑃  ∨  𝑆 )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 79 | 
							
								76 78
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 80 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 81 | 
							
								6 12 17 80
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 82 | 
							
								5 1 2 3 4
							 | 
							atmod4i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑆 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  =  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 83 | 
							
								6 12 11 49 81 82
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  =  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 84 | 
							
								79 83
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 ) )  | 
						
						
							| 85 | 
							
								5 3
							 | 
							latmcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) ) )  | 
						
						
							| 86 | 
							
								7 11 49 85
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 89 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 90 | 
							
								6 12 8 89
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 91 | 
							
								5 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 92 | 
							
								7 70 14 74 91
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 93 | 
							
								88 90 92
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∧  ( 𝑃  ∨  𝑆 ) )  ∨  𝑃 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 94 | 
							
								5 1 7 21 72 74 84 93
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 95 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 96 | 
							
								7 47 49 95
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 97 | 
							
								5 1 3
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 98 | 
							
								7 21 96 74 97
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 99 | 
							
								68 94 98
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 100 | 
							
								5 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑆 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 101 | 
							
								6 12 49 45 81 100
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  =  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 103 | 
							
								5 2
							 | 
							latj12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  =  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 104 | 
							
								7 47 14 51 103
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  =  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 105 | 
							
								5 1 2 3
							 | 
							latmlej12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑄  ∧  𝑈 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 106 | 
							
								7 45 27 14 105
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ∧  𝑈 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 107 | 
							
								5 1 2 3 4
							 | 
							atmod1i1m | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑄  ∧  𝑈 )  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  =  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 108 | 
							
								6 25 45 49 74 106 107
							 | 
							syl231anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  =  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 109 | 
							
								102 104 108
							 | 
							3eqtr3rd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 110 | 
							
								99 109
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 111 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑄  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 112 | 
							
								6 8 22 111
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑄  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 113 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  𝑈  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 114 | 
							
								6 22 25 113
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑈  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 115 | 
							
								5 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 116 | 
							
								7 49 11 115
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 117 | 
							
								5 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 118 | 
							
								6 22 25 117
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 119 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  →  𝑄  ≤  ( 𝑄  ∨  𝑇 ) )  | 
						
						
							| 120 | 
							
								6 8 9 119
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑄  ≤  ( 𝑄  ∨  𝑇 ) )  | 
						
						
							| 121 | 
							
								5 1 3
							 | 
							latmlem2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑄  ≤  ( 𝑄  ∨  𝑇 )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) ) ) )  | 
						
						
							| 122 | 
							
								7 45 11 49 121
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ≤  ( 𝑄  ∨  𝑇 )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) ) ) )  | 
						
						
							| 123 | 
							
								120 122
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 125 | 
							
								5 1 7 51 116 118 123 124
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 126 | 
							
								5 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑈  ≤  ( 𝑅  ∨  𝑈 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( 𝑅  ∨  𝑈 ) )  ↔  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 127 | 
							
								7 27 51 118 126
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑈  ≤  ( 𝑅  ∨  𝑈 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  ( 𝑅  ∨  𝑈 ) )  ↔  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 128 | 
							
								114 125 127
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 129 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 130 | 
							
								7 27 51 129
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 131 | 
							
								5 1 3
							 | 
							latmlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ≤  ( 𝑄  ∨  𝑅 )  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  →  ( 𝑄  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑅  ∨  𝑈 ) ) ) )  | 
						
						
							| 132 | 
							
								7 45 24 130 118 131
							 | 
							syl122anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ≤  ( 𝑄  ∨  𝑅 )  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  →  ( 𝑄  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑅  ∨  𝑈 ) ) ) )  | 
						
						
							| 133 | 
							
								112 128 132
							 | 
							mp2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑄  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 134 | 
							
								5 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  𝑄 )  | 
						
						
							| 135 | 
							
								7 49 45 134
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  𝑄 )  | 
						
						
							| 136 | 
							
								5 1 2 3 4
							 | 
							atmod2i2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑈  ∈  𝐴  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 )  ≤  𝑄 )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  =  ( 𝑄  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 137 | 
							
								6 25 45 51 135 136
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  =  ( 𝑄  ∧  ( 𝑈  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) ) )  | 
						
						
							| 138 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑅  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 139 | 
							
								6 8 22 138
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑅  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 140 | 
							
								5 1 2 3 4
							 | 
							atmod3i2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑈  ∈  𝐴  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑅  ≤  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  =  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 141 | 
							
								6 25 57 24 139 140
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  =  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 142 | 
							
								133 137 141
							 | 
							3brtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) )  | 
						
						
							| 143 | 
							
								5 1 2
							 | 
							latjlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  →  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) ) ) )  | 
						
						
							| 144 | 
							
								7 53 59 14 143
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) )  ≤  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) )  →  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) ) ) )  | 
						
						
							| 145 | 
							
								142 144
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  ( ( 𝑄  ∧  𝑈 )  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑄 ) ) )  ≤  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) ) )  | 
						
						
							| 146 | 
							
								5 1 7 21 55 61 110 145
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) ) )  | 
						
						
							| 147 | 
							
								5 2
							 | 
							latj13 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) )  =  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) ) )  | 
						
						
							| 148 | 
							
								7 14 57 29 147
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑃  ∨  ( 𝑅  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 ) ) )  =  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) ) )  | 
						
						
							| 149 | 
							
								146 148
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) ) )  | 
						
						
							| 150 | 
							
								5 1 2 3
							 | 
							latmlej22 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑈  ∨  𝑆 ) )  | 
						
						
							| 151 | 
							
								7 19 16 27 150
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑈  ∨  𝑆 ) )  | 
						
						
							| 152 | 
							
								5 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 153 | 
							
								7 29 31 152
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 154 | 
							
								5 1 3
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑈  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑈  ∨  𝑆 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( 𝑈  ∨  𝑆 ) ) ) )  | 
						
						
							| 155 | 
							
								7 21 153 33 154
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( 𝑈  ∨  𝑆 ) )  ↔  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( 𝑈  ∨  𝑆 ) ) ) )  | 
						
						
							| 156 | 
							
								149 151 155
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( 𝑈  ∨  𝑆 ) ) )  | 
						
						
							| 157 | 
							
								5 1 2 3
							 | 
							latmlej21 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑆  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( 𝑈  ∨  𝑆 ) )  | 
						
						
							| 158 | 
							
								7 27 24 19 157
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( 𝑈  ∨  𝑆 ) )  | 
						
						
							| 159 | 
							
								5 1 2 3 4
							 | 
							atmod1i1m | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴 )  ∧  ( ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑈  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( 𝑈  ∨  𝑆 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  =  ( ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( 𝑈  ∨  𝑆 ) ) )  | 
						
						
							| 160 | 
							
								6 25 24 31 33 158 159
							 | 
							syl231anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  =  ( ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( 𝑅  ∨  𝑃 ) )  ∧  ( 𝑈  ∨  𝑆 ) ) )  | 
						
						
							| 161 | 
							
								156 160
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) ) )  | 
						
						
							| 162 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  𝑈  ≤  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 163 | 
							
								6 9 25 162
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  𝑈  ≤  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 164 | 
							
								5 1 3
							 | 
							latmlem2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑈  ≤  ( 𝑇  ∨  𝑈 )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) ) ) )  | 
						
						
							| 165 | 
							
								7 27 39 24 164
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( 𝑈  ≤  ( 𝑇  ∨  𝑈 )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) ) ) )  | 
						
						
							| 166 | 
							
								163 165
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) ) )  | 
						
						
							| 167 | 
							
								5 1 2
							 | 
							latjlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) ) ) )  | 
						
						
							| 168 | 
							
								7 29 41 35 167
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ≤  ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) ) ) )  | 
						
						
							| 169 | 
							
								166 168
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑅 )  ∧  𝑈 )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) ) )  | 
						
						
							| 170 | 
							
								5 1 7 21 37 43 161 169
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑄  ∨  𝑇 ) )  ≤  ( 𝑅  ∨  𝑈 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  →  ( ( ( 𝑄  ∨  𝑇 )  ∨  𝑃 )  ∧  𝑆 )  ≤  ( ( ( 𝑄  ∨  𝑅 )  ∧  ( 𝑇  ∨  𝑈 ) )  ∨  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑈  ∨  𝑆 ) ) ) )  |